
Hardening an
Application-specific Linux

tycho@tycho.ws, tycander@cisco.com
github.com/tych0

How big of a problem is this?
● CVE-2019-14284: DoS, Kernel divide by zero
● CVE-2019-14283: infoleak, Out of bounds read
● CVE-2018-7755: KASLR leak

Solution
“Deleted code is debugged code” -- Jeff Sickel

s/CONFIG_BLK_DEV_FD/# CONFIG_BLK_DEV_FD is not set/

There are lots of these
CONFIG_SND
CONFIG_SOUND
CONFIG_WIRELESS
CONFIG_WLAN
CONFIG_STAGING
CONFIG_MACINTOSH_DRIVERS
CONFIG_BT
CONFIG_BLK_DEV_FD
CONFIG_YENTA
CONFIG_PCMCIA
CONFIG_CAN_DEV
CONFIG_CAN_VCAN
CONFIG_WIMAX

CONFIG_RFKILL
CONFIG_WAN
CONFIG_ISDN
CONFIG_*_LAPTOP
CONFIG_CIFS
CONFIG_(^ext4|xfs)_FS
CONFIG_DRM_NOUVEAU
CONFIG_DRM_RADEON
CONFIG_SUSPEND
CONFIG_HIBERNATE
CONFIG_IP_DCCP
CONFIG_IP_SCTP (might need for NFS, etc.)
CONFIG_FB_(^CMDLINE|VESA|EFI)

And lots of these
CONFIG_NET_VENDOR_(^CISCO|INTEL)
CONFIG_SCSI_(^MEGARAID)
CONFIG_LEDS*
CONFIG_MMC
CONFIG_USB* (modems, printers, etc.)
CONFIG_INPUT_* (IR remotes, etc.)
CONFIG_RC_CORE (more IR remotes)
CONFIG_MEMSTICK
CONFIG_BATTERY_*
CONFIG_CHARGER_*
CONFIG_CYCLADES
CONFIG_TYPHOON
CONFIG_X86_PLATFORM_DEVICES

CONFIG_X86_EXTENDED_PLATFORM
CONFIG_INFINIBAND
CONFIG_CDROM_PKTDVD
CONFIG_DNS_RESOLVER
CONFIG_IEEE802154
CONFIG_ATALK
CONFIG_MTD
CONFIG_PARPORT
CONFIG_SFI
CONFIG_ZONE_DMA
CONFIG_HID_* (minus whatever you need)
CONFIG_DRM
CONFIG_AGP

...and lots of these
CONFIG_SLIP
CONFIG_EEPROM_*
CONFIG_IPX
CONFIG_JME
CONFIG_NETCONSOLE
CONFIG_NETPOLL
CONFIG_AUXDISPLAY
CONFIG_UWB
CONFIG_SSB
CONFIG_B44
CONFIG_BCMA
CONFIG_KEYBOARD_*
CONFIG_MEDIA_SUPPORT

CONFIG_VORTEX
CONFIG_FIREWIRE
CONFIG_SENSORS*
CONFIG_HP_ILO (DELL_RBU, etc.)
CONFIG_I8K
CONFIG_SUNDANCE
CONFIG_TYPHOON
CONFIG_DCB
CONFIG_PHONET
CONFIG_ATALK
CONFIG_ATA_OVER_ETH
CONFIG_NET_DROP_MONITOR
CONFIG_ATA_SFF

Kernel config checking script
● Suggests particularly vulnerable things to disable
● Other options “tighten” things
● https://github.com/a13xp0p0v/kconfig-hardened-check
● CONFIG_STATIC_USERMODE_HELPER

https://github.com/a13xp0p0v/kconfig-hardened-check

Detour: The kernel asks userspace for stuff
● Hotplug events
● poweroff/reboot
● Core dumps
● Cgroup v1 has “notify_on_release”
● Module auto-loading
● https://github.com/tych0/huldufolk/blob/master/sample-usermode-helper.toml

has a complete list

https://github.com/tych0/huldufolk/blob/master/sample-usermode-helper.toml

How does it ask userspace?
socket(PF_ALG, SOCK_SEQPACKET, 0); // can be unprivileged

net/ is missing the AF_ALG=38 protocol family, so
it does a
request_module("net-pf-%d", family);

request_module() -> call_modprobe() ->
call_usermode_helper(modprobe_path, ...)

/sbin/modprobe -q -- net-pf-38

modprobe looks in modules.alias and finds:
alias net-pf-38 af_alg
and inserts af_alg.ko

Attack 1

call_usermode_helper(modprobe_path, ...)

Runs everything as
real root in the initial
mount namespace

Settable via a sysctl

=> A binary that functions like a setuid
cat can be used to run arbitrary code.

Attack 2
● Use call_usermode_helper() directly from shellcode
● https://googleprojectzero.blogspot.com/2018/09/ chooses to use

call_usermode_helper() instead of changing memory protections
● Serves as an additional mechanism for an exploit to hand flow control back to

userspace as in https://www.openwall.com/lists/oss-security/2017/02/04/1 or
https://www.openwall.com/lists/oss-security/2016/12/07/3

https://googleprojectzero.blogspot.com/2018/09/
https://www.openwall.com/lists/oss-security/2017/02/04/1
https://www.openwall.com/lists/oss-security/2016/12/07/3

The solution
● CONFIG_STATIC_USERMODE_HELPER=y
● Proxy all call_usermode_helper() requests through a hard coded path in

userspace (set via
CONFIG_STATIC_USERMODEHELPER_PATH="/sbin/usermode-helper")

● Userspace decides what is legitimate and what is not

What goes in /sbin/usermode-helper?
● First public implementation in LinuxKit:

https://github.com/linuxkit/linuxkit/blob/master/pkg/init/usermode-helper.c
○ Not general purpose (disallows most helpers)
○ Written in (simple) C

● Enter https://github.com/tych0/huldufolk
○ Written in (<200 lines of) Rust
○ Config file for specifying what to allow

https://github.com/linuxkit/linuxkit/blob/master/pkg/init/usermode-helper.c
https://github.com/tych0/huldufolk

How does it work?
● Kernel does:

execv(“/sbin/usermode-helper”, (char *[]){“modprobe”, NULL})
● usermode-helper reads a hard coded config file path e.g.

/etc/usermode-helper.conf
● Decides whether to allow the action based on args
● Re-execs the real binary if allowed

Sample config
kernel/kmod.c
set via sysctl
[[helpers]]
path = "/sbin/modprobe"
argc = 4
capabilities = "= cap_sys_module+eip"

kernel/reboot.c
set via a sysctl
[[helpers]]
path = “/sbin/poweroff”

kernel/reboot.c
Hard coded.
[[helpers]]
path = "/sbin/reboot"
argc = 1

lib/kobject_uevent.c
Default set by
CONFIG_UEVENT_HELPER_PATH,
controllable by sysctl.
[[helpers]]
path = "/sbin/hotplug"
argc = 2

Threat Model
● Attacker has control of RDI and RIP, so they can do

call_usermode_helper()
● Other situations (attacker writes to /proc/sys/kernel/modprobe,

/etc/usermode-helper, or /sbin/usermode-helper) not considered

TODOs
● argument filters (probably based on regexes?)
● setting No New Privileges?
● Namespaces?
● seccomp filters? Is there some nice language for specifying these in config

files? Perhaps we want to do something else?

Pain points
● Need to change config file when you change sysctls or add custom cgroup

release scripts
● Could read sysctls for these things maybe?

Code
● https://github.com/tych0/huldufolk
● Detailed writeup in README.md about threat model, etc.
● Full config for every usermode helper call in 5.0

https://github.com/tych0/huldufolk

Protecting secrets in the
TPM

Problem Statement
● Store secrets in the TPM
● Restrict access to the secrets to authorized kernels
● Work on legacy BIOS as well as UEFI based systems
● Easy to manage, handle updates gracefully

Protecting TPM Secrets
● “Seal” data to a set of PCRs

○ A specific set of PCR values are used as a key to lock/unlock TPM secrets

● TPM protects PCRs from tampering

Setting TPM PCRs in Early Boot
● Secure boot measures system state into the PCRs

○ firmware / config
○ bootloader, etc.
○ Kernel

● When the components change, the PCR values change

UEFI Secure Boot
● UEFI verifies signature of everything it executes

○ static root of trust
○ public key embedded in firmware
○ Microsoft controls master keys

● PCR 7 measures the kernel’s igning authority
○ Stable across multiple kernels with the same signer

Intel Trusted Execution Technology (TXT)
● Hardware and firmware creates a dynamic root of trust

○ “SINIT ACM”

● TXT “measured launch environment” verifies and bootstraps the kernel

Solving the problem
● UEFI secure boot

○ Stable PCR
○ Only works on UEFI systems

● Intel TXT
○ Unstable PCRs
○ Works on all systems with TXT (which are more than UEFI)

Lessons Learned
● Signature based PCRs are stable assuming the same signing authority
● TXT verification of the kernel/initrd/command line happens in the “tboot”

bootloader

Proposed solution
● Extend tboot to support signature verification using PECOFF

○ Same format as UEFI
○ Add signing authority to the tboot policy

● No changes required to SINIT ACM required

bootloader

OS boot

VLP

LCP
tboot

ACM

TPM

pre-DRTM

DRTM
kernel

verification

● bootloader boots
tboot

● tboot performs TXT
sanity checks

bootloader

OS boot

VLP

LCP
tboot

ACM

TPM

pre-DRTM

DRTM
kernel

verification

● tboot issues special
CPU instruction to
start TXT process

● SINIT Authenticated
Code Module (ACM)
establishes a
dynamic root of trust

bootloader

OS boot

VLP

LCP
tboot

ACM

TPM

pre-DRTM

DRTM
kernel

verification

● ACM examines the
Launch Control
Policy (LCP) rooted
in the TPM

● ACM enforces the
LCP
− validates firmware

− validates tboot

bootloader

OS boot

VLP

LCP
tboot

ACM

TPM

pre-DRTM

DRTM
kernel

verification

● ACM returns
execution to the
“measured launch
environment” (tboot)

● tboot continues to
execute in a
protected
environment

bootloader

OS boot

VLP

LCP
tboot

ACM

TPM

pre-DRTM

DRTM
kernel

verification

● tboot examines the
Verified Launch
Policy (VLP) rooted in
the TPM

● tboot verifies the
kernel, initrd, and
cmdline
− currently using

hash values
− adding support for

signature
verification

bootloader

OS boot

VLP

LCP
tboot

ACM

TPM

pre-DRTM

DRTM
kernel

verification

● tboot extends TPM
PCRs
− kernel signing

authority
certificate digest

− kernel, initrd, and
cmdline digests

● TPM TXT PCRs are
protected against
tampering outside the
dynamic root of trust

bootloader

OS boot

VLP

LCP
tboot

ACM

TPM

pre-DRTM

DRTM
kernel

verification

● tboot boots the OS
using the measured
kernel, initrd, cmdline

● TPM rooted secrets
are unlocked if the
tboot PCR values
match the sealing
values

Open Issues
● No verification of the initrd or kernel command line

○ Problem for UEFI too
○ May be able to use UEFI workarounds
○ Existing digest verification OK

Links
● Code:

https://sourceforge.net/p/tboot/mailman/tboot-devel/?style=threaded&viewmo
nth=201909

● tboot mailing list thread: https://github.com/pcmoore/misc-tboot
● Paul’s talk: https://www.youtube.com/watch?v=Qbjz_5jUE9o
● Paul’s slides:

https://static.sched.com/hosted_files/lssna19/17/lss-securing_tpm_with_txt-p
moore-201909-r2.pdf

https://sourceforge.net/p/tboot/mailman/tboot-devel/?style=threaded&viewmonth=201909
https://sourceforge.net/p/tboot/mailman/tboot-devel/?style=threaded&viewmonth=201909
https://github.com/pcmoore/misc-tboot
https://www.youtube.com/watch?v=Qbjz_5jUE9o
https://static.sched.com/hosted_files/lssna19/17/lss-securing_tpm_with_txt-pmoore-201909-r2.pdf
https://static.sched.com/hosted_files/lssna19/17/lss-securing_tpm_with_txt-pmoore-201909-r2.pdf

Спасибо
tycho@tycho.ws, tycander@cisco.com

http://github.com/tych0

