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This	talk
• Not	about	storage
• Not	about	kernel	bypass	technologies	(DPDK,	RDMA,	etc.)
• It’s	about	our	experience	using	Linux	network	stack	in	storage	products
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net_device story
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Can	we	just	use	a	flat	network	model?

pnic pnic pnicpnic

Logical
Network	

A
Logical
Network	

C

Logical
Network	

B

pnic pnic pnicpnic

IP1 IP2 IP3 IP5IP4
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Not	really…

pnic pnic pnicpnic

IP1 IP2 IP3 IP5IP4

• We	need	to	handle	VLAN	tagged	traffic
• We	need	network-level	HA	for	some	clients	without	native	multi-pathing	

pnic pnic pnicpnic

IP1 IP2 IP3

IP5IP4

bond/teamvlan

vlan
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Still	not	enough
• No	way	to	move	a	logical	network	or	its	part	to	another	namespace
• It’s	hard	to	change	MTU	independently	for	different	logical	networks

• no	net_device,	need	to	set	it	per	route
• More	difficult	TC,	firewall,	xfrm and	PBR	implementation
• No	way	to	group	the	devices	of	one	logical	network

• e.g.,	to	shutdown	them	all	together
• Etc
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Okay,	just	create	MACVLANs

pnic pnic pnicpnic

IP1 IP2 IP3

bond/team

macvlan macvlan

vlan 5

macvlan

vlan 6

IP5IP4

macvlan

vlan 7

IP6

macvlan

IP7

macvlan

Other	net_nsOther	net_ns
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MACVLAN	and	oper state	propagation

pnicpnic

bond/team

Net_ns B
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Net_ns A

Macvlan1
(mode	bridge)

Macvlan2
(mode	bridge)

Macvlan3
(mode	bridge)

• In	bridge	mode,	sibling	MACVLANs	communicate	directly	(in-memory)
• If	you	pull	cables	from	underlying	ports,	oper state	will	be	transferred	up	through	

the	hierarchy	and	MACVLANs	will	report	NO_CARRIER
• The	in-memory communication	between	MACVLANs	will	fail
• Can	be	solved	in	many	ways,	we	just	disabled	propagation	for	MACVLANs	in	

bridge	mode	(driver	patch,	unconditional	change	for	now)



Hot-plug	trick

bond/team
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Macvlan2
(mode	bridge)

pnicpnic

bond/team

Net_ns BNet_ns A

Macvlan1
(mode	bridge)

Macvlan2
(mode	bridge)

Macvlan3
(mode	bridge)

Interconnect
(e.g.	ipoib)

Interconnect
(e.g.	ipoib)

Main	RT
fdxx::/64	via	macvlan2
fdyy::/64	via	interconnect
fdxx::abcd/128	via	fdyy::xyz

Main	RT
fdxx::/64	via	macvlan2
fdyy::/64	via	interconnect
fdxx::abcd/128	via	fdyy::xyz

To	peer To	peerTo	ToR



Asymmetric	VLAN	configuration

pnic

vlan 10
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Container	(other	net_ns)

macvlan2

• E.g.,	different	network	manager	in	the	system	container	(other	device	layout)
• Sharing	of	the	same	VLAN	ID	is	not	going	to	work
• Address	IP2 will	not	be	reachable	from	the	outside

IP4

macvlan1

vlan 10 vlan 20

vlan 30

macvlan4

IP6

macvlan3

IP5IP2 IP3IP1



__netif_receive_skb_core()
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Generic	XDP	
hook
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(opt	sw untag)
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Can	we	just	change	the	order?
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VLAN	lookup
(vlan_info)

rx_handler
hook

rx_handler
hook

VLAN	lookup
(vlan_info)

skb is	passed	to	rx_hander
only	if	VLAN	lookup	fails

If	VLAN	device	is	found,
skb goes	there	

MAC	lookup	failed,	broadcast/multicast
packet,	etc.

rx_handler consumed	skb
(e.g.	MAC	lookup	succeeded	for	

MACVLAN)



No,	some	configurations	will	break
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pnicpnic

bond/teamvlan vlan

macvlanmacvlan

bond/team

vlan vlan

pnicpnic

• In	some	setups	dedicated	VLANs	are	used	to	steal	traffic	from	a/b	bonds
• If	we	change	the	order,	we	will	break	this
• Make	order	configurable?

• per	lower	net_device?
• per	VLAN	ID?
• per	skb (e.g.,	based	on	TC	provided	hints)?



MAC	addresses	proliferation
• As	we	scale	the	configuration	and	add	networks,	we	need	to	add	more	MACVLANs
• Each	MACVLAN	has	a	unique	auto-generated	unicast	MAC	address
• UC/MC	lists	must	be	propagated	down	to	the	NIC	(limited	space)
• MAC	tables	on	the	switches	are	limited
• Problematic	in	the	virtual	deployment	of	the	stack	(HCI,	SDS)

• e.g.,	on	VMware	ESXi vSwitches don’t	do	learning
• all	VM	MACs	are	supposed	to	be	assigned	by	the	hypervisor
• any	auto-generated	MAC	behind	vNIC won’t	be	reachable	by	default
• works	only	with	non-standard	security	settings	(promisc mode,	forged	transmit)
• causes	network	model	divergence	(flat	vs.	hierarchical)
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Is	IPVLAN	better?
• Shares	MAC	with	the	lower	net_device (i.e.,	single	MAC	behind	pNIC/vNIC)
• Supports	L2	mode
• But	has	its	own	issues…
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IPVLAN	MTU	handling
• ipvlan always	follows	lower	net_device’s MTU
• There	was	an	attempt	to	fix	that	before

• https://patchwork.ozlabs.org/patch/857994/
• Backward-compatibility	concerns

• We	introduced	per-ipvlan mtu_policy
• Defaults	to	IPVLAN_MTU_POLICY_FOLLOW_PARENT
• Can	be	changed	to	IPVLAN_MTU_POLICY_INDEPENDENT
• Can	be	set	at	creation	time	and	changed	later	via	netlink
• The	patch	will	be	submitted	soon	(pending	iproute2	changes)

eno1
MTU=1500

ipvlan1
MTU=1500
Policy=follow

ipvlan2
MTU=1500
Policy=indep

eno1
MTU=

ipvlan1
MTU=
Policy=follow

ipvlan2
MTU=1500
Policy=indep

eno1
MTU=9000

ipvlan1
MTU=9000
Policy=follow

ipvlan2
MTU=9000
Policy=follow
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VLAN	over	IPVLAN

eno1

ipvlan

vlan

eno1

vlan

ipvlan1

• Was	allowed	before,	but	never	worked	(IP1 is	unreachable	in	this	example)
• Explicitly	disallowed	since	3518e40b3cd8e	(kernel	4.16)	

IP1 IP1IP2

ipvlan2

IP2

IP	hash
IP2	->	ipvlan

IP	hash
IP1	->	ipvlan1
IP2	->	ipvlan2
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VLAN	over	IPVLAN,	details

• Only	address	on	the	IPVLAN	gets	added	to	the	hash,	so	lookup	of	the	2nd address	
will	fail	in	the	rx_handler and	skb will	be	dropped

• There	is	a	single	hash	in	IPVLAN	master	device,	no	support	of	per-VLAN	hashes
• Does	it	make	sense	to	add	it?	Probably	no…
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Alternative	approach

PNIC
MAC=M1

vlan 10

20

Container	(other	net_ns)

ipvlan2

• Use	IPVLAN	for	untagged	traffic
• Add	veth pair	for	tagged/untagged	traffic,	change	MAC	in	a	container	(hack)
• Setup	redirection	and	mirroring	in	the	default	namespace

IP4

veth2
MAC=M1

vlan 10 vlan 20

vlan 30

ipvlan4

IP6

ipvlan3

IP5IP2 IP3IP1

veth
MAC=M2

ipvlan1

ingress	->	egress	redirect

ingress	->	egress	redirect/mirroring



Alternative	approach,	options
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• TC	ingress	hooks
• TC	filters	+	mirred action

• e.g.,	via	a	slightly	modified	basic	filter	and	ipsets
• Redirect	vs.	mirror	depending	on	the	filter

• TC	cls_bpf in	the	direct-action	mode
• Classification	in	BPF	program	using	user-space	provided	maps
• Redirect/mirroring	via	bpf_redirect/bpf_clone_redirect helpers

• Issues
• Control	plane	dependencies	(not	transparent)

• Need	to	update	filters/maps
• Need	to	sync	VIDs	

• Hard	to	scale	beyond	one	device



Zeroconf
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Zeroconf issues
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• IPv4/IPv6	LL	+	mDNS +	DNS-SD
• SSDP	is	another	option

• Works	fine	on	servers	in	DC	networks
• Surprisingly,	many	issues	on	client	machines

• Multi-homing	hosts
• Firewalls	blocking	mDNS
• IPv6	LL	in	browsers
• Bugs	in	mDNS libraries
• …

• Need	a	simple	plan	B…



IPv4LL	address	claiming
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Probing	phaseAnnouncement	phase



Zeroconf workaround	via	BPF
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Zeroconf workaround	via	BPF
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No	ARP	requests	for	matching	packets

(TC	egress	hook	is	before	taps)
Note,	too	narrow	criteria	will

cause	rate	limiting



When	BPF	fails…

27



Link-layer	discovery
• L2	protocols	(LLDP	aka	IEEE	802.1ab,	Cisco	CDP,	etc.)
• Provide	a	lot	of	useful	info	about	your	neighbor	device	(switch,	router,	host)

• Name/ID	of	the	peer	device	and	port
• Management	IP
• Native	and	allowed	VLANs
• MTU	and	LAG	info
• And	more

• Our	use-cases
• Automatic	configuration,	network	validation	and	visualization
• Network	troubleshooting

• Linux	support
• No	in-kernel	support	
• lldpd daemon	+	cli	(e.g.,	https://github.com/vincentbernat/lldpd)
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LLDP	example
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Some	not	trivial	issues
• Fake	PDUs	is	a	real	problem

• Especially	in	the	multi-vendor	environment
• Switches	pass	what	they	are	not	supposed	to
• Usually	issues	with	CDP,	but	seen	LLDP	as	well

• Dual-protocol	devices
• Often	need	information	from	both,	can’t	just	pick	LLDP

• Historical	data	is	important
• Need	to	store	N	PDUs	for	a	valid	chassis/port	ID	pair	per	protocol

• User-space	daemon	is	required
• Okay	in	most	cases
• Problematic	in	some	corner	cases	(DC	after	crashes,	failed	upgrades,	etc.)
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Can	I	do	it	in	BPF?
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• We	have	TC	ingress	hooks	to	attach	BPF	programs	to
• We	can	parse	LLDP/CDP	packets	and	filter	them	in	BPF

• Filtering	means	dropping	fake	PDUs	(optionally	saving)
• We	can	store	them	in	BPF	maps	as	they	are	received

• We	can	store	the	last	N	unique	chassis/port	ID	PDUs		
• We	can	read	the	content	of	the	maps	from	the	user-space!
• Sounds	like	a	good	idea?;)

ifindex

Chassis/port	ID	key
Chassis/port	ID	key

Chassis/port	ID	key

protocol

protocol

PDU	key

Chassis/port	ID	key
Chassis/port	ID	key

Chassis/port	ID	key

PDU	value

PDU	key PDU	value

MD	key MD	value…

ifindex

…

…

PDU	key PDU	value

PDU	key PDU	value

MD	key MD	value

…



Yes,	you	can…but	think	twice!
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“7”	will	not	
work

ifindex

BPF
spinlock

Metadata
(ktime)

Protected
value
(array)

Primary	key

Data	from
LLDP	PDUs



Issues
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• Parsing	of	TLV	based	protocols	is	very	painful!
• Can	be	done,	but	with	very	ugly	hacks

• Maps
• Map-of-maps,	but	not	map-of-maps-of-maps
• Can	add	one	level	with	BPFFS	and	custom	loader

• Concurrency
• Very	restricting	BPF	spinlocks	(see	linux/bpf.h)
• Can	only	protect	map	value in	3	kinds	of	maps,	no	protection	of	maps
• Can’t	build	your	own	primitives	on	top	of	spinlocks
• Per-CPU	maps	can	be	used,	but	need	user-space	processing
• Hack	for	slow	protocols	like	LLDP?

• XDP	redirect	to	one	CPU	core	and	process	there	with	preemption	off
• Not	supported	for	generic	XDP	today

• Some	pain	points	seen	by	others:
• https://mbertrone.github.io	›	documents	›	18-eBPF-experience



systemd-resolved
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Systemd-resolved	DNS	stub
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systemd-resolved
DNS	stub	=	on

lo enp0

/etc/resolv.conf
nameserver=127.0.0.53

127.0.0.0/8 10.5.5.3/24

Container	(net_ns X,	mount_ns A)

Host	(net_ns X,	mount_ns B)

/etc/resolv.conf
nameserver=127.0.0.53

App App

LAN

resolved.conf
[Resolve]
DNS=10.5.5.5
DNS=8.8.8.8



Systemd-resolved	DNS	stub,	2nd net_ns
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systemd-resolved
DNS	stub	=	on

lo enp0

resolved.conf
[Resolve]
DNS=10.5.5.5
DNS=8.8.8.8

/etc/resolv.conf
nameserver=127.0.0.53

127.0.0.0/8 10.5.5.3/24

Container	(net_ns X,	mount_ns A)

Host	(net_ns X,	mount_ns B)

/etc/resolv.conf
nameserver=127.0.0.53

App App

LAN

/etc/resolv.conf
nameserver=127.0.0.53

Container	(net_ns Y,	mount_ns C)

App

lo veth ipvlan

enp0

Other	”lo”	net_device
(DNS	packets	are	
dropped here)



Will	this	work?
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systemd-resolved
DNS	stub	=	on

lo enp0

resolved.conf
[Resolve]
DNS=10.5.5.5
DNS=8.8.8.8

/etc/resolv.conf
nameserver=128.221.255.53

127.0.0.0/8 10.5.5.3/24

Container	(net_ns X,	mount_ns A

Host	(net_ns X,	mount_ns B)

/etc/resolv.conf
nameserver=128.221.255.53

App App

LAN

/etc/resolv.conf
nameserver=128.221.255.53

Container	(net_ns Y,	mount_ns C)

App

lo veth

ipvlan

enp0

127.0.0.0/8

128.221.255.53/24

veth

128.221.255.1/24



No…
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• 127.0.0.53:53	is	not	configurable
• The	IP	address	is	hard-coded	in	systemd-resolved



The	first	attempt	to	solve	this	- BPF
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No	luck
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• Before	bind(),	it	binds	to	the	“lo”	device	via	SO_BINDTOIFINDEX
• SO_BINDTODEVICE	in	the	previous	version

• Even	though	the	BPF	program	changed	the	source	IP,	socket	still	has	
sk_bound_dev_if ==	1

• UDP	packets	are	not	delivered



Bind	to	different	device	from	BPF
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• BPF_PROG_TYPE_CGROUP_SOCK
• BPF_CGROUP_INET_SOCK_CREATE	– too	early	to	change	at	creation	time
• BPF_CGROUP_INET4_POST_BIND	– can’t	access	bound_dev_if here

• BPF_PROG_TYPE_CGROUP_SOCK_ADDR
• BPF_CGROUP_INET4_BIND	- changed	the	bound	device	here
• Extended	the	ctx (is	that	right	way?	or	better	do	sock	lookup?)

• In	kernel	5.3,	there	is	setsockopt/getsockopt BPF	hooks
• Didn’t	try	them	yet



Still	no	luck
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• After	changing	the	bound	device	for	the	socket,	systemd-resolved	started	seeing	
the	UDP	packets!

• But	it	immediately	dropped	them	all	because	both	source	and	destination	IPs	
were	not	127.x.y.z

• Good	example	of	defensive	programming,	but	bad	for	us…



The	second	attempt	- iptables
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• The	above	will	not work	if	systemd-resolved	binds	the	socket	to	the	device
• Final	thing	- clear	sk_bound_dev_if from	BPF	program	attached	to	

cgroup/bind4
• Should	be	possible	to	skip	setting	it	vs.	clearing	it	in	5.3



Success
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Wait…success?

45
P.S.	Don’t	blame	systemd; it	works	as	designed.



To	bind	or	not	to	bind?
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Interface	selection
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• PBR	usually	works	fine
• but	for	some	apps,	it’s	problematic	to	do	the	explicit	bind



bpf_bind()
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• We	can	attach	a	BPF	program	to	cgroup and	hook	into	connect/sendmsg path
• Context	provides	information	about	where	an	app	is	connecting	to
• We	can	pick	source	address	(but	not	port)	and	bind	to	it

• Most	apps	are	not	aware	and	need	no	modification
• Selection	may	be	flexible

• Can	also	bind	to	the	device
• bound_dev_if is	available	from	BPF_CGROUP_INET_SOCK_CREATE

App

Cgroup A

App

Cgroup BBPF	
prog

enp0 enp1

BPF	
prog App

Cgroup C

enp2 enp3

App

BPF	bind	to	source	IP	+	PBR BPF	bind	to	device Normal	bind	by
app	+	PBR

No	bind,	main	RT	lookup



Yet	another	net_ns use-case
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Simple	interface/IP	hiding	trick
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Linux	VM

vNIC
MAC=M1

Guest
agent

Internal	
vSwitch

Other	net_ns

macvlan
mode=passthru

MAC=M1

veth
MAC=M2

veth2
MAC=M3

Int_IP2

Int_IP2

Apps
IP1 IP2

Main	RT
Int_IP2	via	IP2	dev	veth

SNAT	to	
Int_IP2



Thanks!
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Q&A
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