
1



Linux	networking	stack	
in	enterprise	storage

Dmitry	Krivenok
Dell	EMC

2



This	talk
• Not	about	storage
• Not	about	kernel	bypass	technologies	(DPDK,	RDMA,	etc.)
• It’s	about	our	experience	using	Linux	network	stack	in	storage	products

3



net_device story

4



Can	we	just	use	a	flat	network	model?

pnic pnic pnicpnic

Logical
Network	

A
Logical
Network	

C

Logical
Network	

B

pnic pnic pnicpnic

IP1 IP2 IP3 IP5IP4

5



Not	really…

pnic pnic pnicpnic

IP1 IP2 IP3 IP5IP4

• We	need	to	handle	VLAN	tagged	traffic
• We	need	network-level	HA	for	some	clients	without	native	multi-pathing	

pnic pnic pnicpnic

IP1 IP2 IP3

IP5IP4

bond/teamvlan

vlan

6



Still	not	enough
• No	way	to	move	a	logical	network	or	its	part	to	another	namespace
• It’s	hard	to	change	MTU	independently	for	different	logical	networks

• no	net_device,	need	to	set	it	per	route
• More	difficult	TC,	firewall,	xfrm and	PBR	implementation
• No	way	to	group	the	devices	of	one	logical	network

• e.g.,	to	shutdown	them	all	together
• Etc

7



Okay,	just	create	MACVLANs

pnic pnic pnicpnic

IP1 IP2 IP3

bond/team

macvlan macvlan

vlan 5

macvlan

vlan 6

IP5IP4

macvlan

vlan 7

IP6

macvlan

IP7

macvlan

Other	net_nsOther	net_ns

8



MACVLAN	and	oper state	propagation

pnicpnic

bond/team

Net_ns B

9

Net_ns A

Macvlan1
(mode	bridge)

Macvlan2
(mode	bridge)

Macvlan3
(mode	bridge)

• In	bridge	mode,	sibling	MACVLANs	communicate	directly	(in-memory)
• If	you	pull	cables	from	underlying	ports,	oper state	will	be	transferred	up	through	

the	hierarchy	and	MACVLANs	will	report	NO_CARRIER
• The	in-memory communication	between	MACVLANs	will	fail
• Can	be	solved	in	many	ways,	we	just	disabled	propagation	for	MACVLANs	in	

bridge	mode	(driver	patch,	unconditional	change	for	now)



Hot-plug	trick

bond/team

10

Macvlan2
(mode	bridge)

pnicpnic

bond/team

Net_ns BNet_ns A

Macvlan1
(mode	bridge)

Macvlan2
(mode	bridge)

Macvlan3
(mode	bridge)

Interconnect
(e.g.	ipoib)

Interconnect
(e.g.	ipoib)

Main	RT
fdxx::/64	via	macvlan2
fdyy::/64	via	interconnect
fdxx::abcd/128	via	fdyy::xyz

Main	RT
fdxx::/64	via	macvlan2
fdyy::/64	via	interconnect
fdxx::abcd/128	via	fdyy::xyz

To	peer To	peerTo	ToR



Asymmetric	VLAN	configuration

pnic

vlan 10

11

Container	(other	net_ns)

macvlan2

• E.g.,	different	network	manager	in	the	system	container	(other	device	layout)
• Sharing	of	the	same	VLAN	ID	is	not	going	to	work
• Address	IP2 will	not	be	reachable	from	the	outside

IP4

macvlan1

vlan 10 vlan 20

vlan 30

macvlan4

IP6

macvlan3

IP5IP2 IP3IP1



__netif_receive_skb_core()

12

Generic	XDP	
hook

802.1q/802.1ad
(opt	sw untag)

Network	taps

Ingress	TC/NF
hooks

VLAN	lookup
(vlan_info)

Start

rx_handler
hook

802.1p

Deliver	to	
protocols

(IPv4,	IPv6,	etc)
Dropped	or	
consumed

XDP_PASS
No	XDP
program

XDP	says
to	drop

Error

Skip	
hooks

Skip	
taps

Error

No	VLAN
device

Consumed
Consumed

VLAN	found
(clear	tci)

Handler	asked	
to	restart

Error

skb

skb



Can	we	just	change	the	order?

13

VLAN	lookup
(vlan_info)

rx_handler
hook

rx_handler
hook

VLAN	lookup
(vlan_info)

skb is	passed	to	rx_hander
only	if	VLAN	lookup	fails

If	VLAN	device	is	found,
skb goes	there	

MAC	lookup	failed,	broadcast/multicast
packet,	etc.

rx_handler consumed	skb
(e.g.	MAC	lookup	succeeded	for	

MACVLAN)



No,	some	configurations	will	break

14

pnicpnic

bond/teamvlan vlan

macvlanmacvlan

bond/team

vlan vlan

pnicpnic

• In	some	setups	dedicated	VLANs	are	used	to	steal	traffic	from	a/b	bonds
• If	we	change	the	order,	we	will	break	this
• Make	order	configurable?

• per	lower	net_device?
• per	VLAN	ID?
• per	skb (e.g.,	based	on	TC	provided	hints)?



MAC	addresses	proliferation
• As	we	scale	the	configuration	and	add	networks,	we	need	to	add	more	MACVLANs
• Each	MACVLAN	has	a	unique	auto-generated	unicast	MAC	address
• UC/MC	lists	must	be	propagated	down	to	the	NIC	(limited	space)
• MAC	tables	on	the	switches	are	limited
• Problematic	in	the	virtual	deployment	of	the	stack	(HCI,	SDS)

• e.g.,	on	VMware	ESXi vSwitches don’t	do	learning
• all	VM	MACs	are	supposed	to	be	assigned	by	the	hypervisor
• any	auto-generated	MAC	behind	vNIC won’t	be	reachable	by	default
• works	only	with	non-standard	security	settings	(promisc mode,	forged	transmit)
• causes	network	model	divergence	(flat	vs.	hierarchical)

15



Is	IPVLAN	better?
• Shares	MAC	with	the	lower	net_device (i.e.,	single	MAC	behind	pNIC/vNIC)
• Supports	L2	mode
• But	has	its	own	issues…

16



IPVLAN	MTU	handling
• ipvlan always	follows	lower	net_device’s MTU
• There	was	an	attempt	to	fix	that	before

• https://patchwork.ozlabs.org/patch/857994/
• Backward-compatibility	concerns

• We	introduced	per-ipvlan mtu_policy
• Defaults	to	IPVLAN_MTU_POLICY_FOLLOW_PARENT
• Can	be	changed	to	IPVLAN_MTU_POLICY_INDEPENDENT
• Can	be	set	at	creation	time	and	changed	later	via	netlink
• The	patch	will	be	submitted	soon	(pending	iproute2	changes)

eno1
MTU=1500

ipvlan1
MTU=1500
Policy=follow

ipvlan2
MTU=1500
Policy=indep

eno1
MTU=

ipvlan1
MTU=
Policy=follow

ipvlan2
MTU=1500
Policy=indep

eno1
MTU=9000

ipvlan1
MTU=9000
Policy=follow

ipvlan2
MTU=9000
Policy=follow

17



VLAN	over	IPVLAN

eno1

ipvlan

vlan

eno1

vlan

ipvlan1

• Was	allowed	before,	but	never	worked	(IP1 is	unreachable	in	this	example)
• Explicitly	disallowed	since	3518e40b3cd8e	(kernel	4.16)	

IP1 IP1IP2

ipvlan2

IP2

IP	hash
IP2	->	ipvlan

IP	hash
IP1	->	ipvlan1
IP2	->	ipvlan2

18



VLAN	over	IPVLAN,	details

• Only	address	on	the	IPVLAN	gets	added	to	the	hash,	so	lookup	of	the	2nd address	
will	fail	in	the	rx_handler and	skb will	be	dropped

• There	is	a	single	hash	in	IPVLAN	master	device,	no	support	of	per-VLAN	hashes
• Does	it	make	sense	to	add	it?	Probably	no…

19



Alternative	approach

PNIC
MAC=M1

vlan 10

20

Container	(other	net_ns)

ipvlan2

• Use	IPVLAN	for	untagged	traffic
• Add	veth pair	for	tagged/untagged	traffic,	change	MAC	in	a	container	(hack)
• Setup	redirection	and	mirroring	in	the	default	namespace

IP4

veth2
MAC=M1

vlan 10 vlan 20

vlan 30

ipvlan4

IP6

ipvlan3

IP5IP2 IP3IP1

veth
MAC=M2

ipvlan1

ingress	->	egress	redirect

ingress	->	egress	redirect/mirroring



Alternative	approach,	options

21

• TC	ingress	hooks
• TC	filters	+	mirred action

• e.g.,	via	a	slightly	modified	basic	filter	and	ipsets
• Redirect	vs.	mirror	depending	on	the	filter

• TC	cls_bpf in	the	direct-action	mode
• Classification	in	BPF	program	using	user-space	provided	maps
• Redirect/mirroring	via	bpf_redirect/bpf_clone_redirect helpers

• Issues
• Control	plane	dependencies	(not	transparent)

• Need	to	update	filters/maps
• Need	to	sync	VIDs	

• Hard	to	scale	beyond	one	device



Zeroconf

22



Zeroconf issues

23

• IPv4/IPv6	LL	+	mDNS +	DNS-SD
• SSDP	is	another	option

• Works	fine	on	servers	in	DC	networks
• Surprisingly,	many	issues	on	client	machines

• Multi-homing	hosts
• Firewalls	blocking	mDNS
• IPv6	LL	in	browsers
• Bugs	in	mDNS libraries
• …

• Need	a	simple	plan	B…



IPv4LL	address	claiming

24

Probing	phaseAnnouncement	phase



Zeroconf workaround	via	BPF

25



Zeroconf workaround	via	BPF

26
No	ARP	requests	for	matching	packets

(TC	egress	hook	is	before	taps)
Note,	too	narrow	criteria	will

cause	rate	limiting



When	BPF	fails…

27



Link-layer	discovery
• L2	protocols	(LLDP	aka	IEEE	802.1ab,	Cisco	CDP,	etc.)
• Provide	a	lot	of	useful	info	about	your	neighbor	device	(switch,	router,	host)

• Name/ID	of	the	peer	device	and	port
• Management	IP
• Native	and	allowed	VLANs
• MTU	and	LAG	info
• And	more

• Our	use-cases
• Automatic	configuration,	network	validation	and	visualization
• Network	troubleshooting

• Linux	support
• No	in-kernel	support	
• lldpd daemon	+	cli	(e.g.,	https://github.com/vincentbernat/lldpd)

28



LLDP	example

29



Some	not	trivial	issues
• Fake	PDUs	is	a	real	problem

• Especially	in	the	multi-vendor	environment
• Switches	pass	what	they	are	not	supposed	to
• Usually	issues	with	CDP,	but	seen	LLDP	as	well

• Dual-protocol	devices
• Often	need	information	from	both,	can’t	just	pick	LLDP

• Historical	data	is	important
• Need	to	store	N	PDUs	for	a	valid	chassis/port	ID	pair	per	protocol

• User-space	daemon	is	required
• Okay	in	most	cases
• Problematic	in	some	corner	cases	(DC	after	crashes,	failed	upgrades,	etc.)

30



Can	I	do	it	in	BPF?

31

• We	have	TC	ingress	hooks	to	attach	BPF	programs	to
• We	can	parse	LLDP/CDP	packets	and	filter	them	in	BPF

• Filtering	means	dropping	fake	PDUs	(optionally	saving)
• We	can	store	them	in	BPF	maps	as	they	are	received

• We	can	store	the	last	N	unique	chassis/port	ID	PDUs		
• We	can	read	the	content	of	the	maps	from	the	user-space!
• Sounds	like	a	good	idea?;)

ifindex

Chassis/port	ID	key
Chassis/port	ID	key

Chassis/port	ID	key

protocol

protocol

PDU	key

Chassis/port	ID	key
Chassis/port	ID	key

Chassis/port	ID	key

PDU	value

PDU	key PDU	value

MD	key MD	value…

ifindex

…

…

PDU	key PDU	value

PDU	key PDU	value

MD	key MD	value

…



Yes,	you	can…but	think	twice!

32

“7”	will	not	
work

ifindex

BPF
spinlock

Metadata
(ktime)

Protected
value
(array)

Primary	key

Data	from
LLDP	PDUs



Issues

33

• Parsing	of	TLV	based	protocols	is	very	painful!
• Can	be	done,	but	with	very	ugly	hacks

• Maps
• Map-of-maps,	but	not	map-of-maps-of-maps
• Can	add	one	level	with	BPFFS	and	custom	loader

• Concurrency
• Very	restricting	BPF	spinlocks	(see	linux/bpf.h)
• Can	only	protect	map	value in	3	kinds	of	maps,	no	protection	of	maps
• Can’t	build	your	own	primitives	on	top	of	spinlocks
• Per-CPU	maps	can	be	used,	but	need	user-space	processing
• Hack	for	slow	protocols	like	LLDP?

• XDP	redirect	to	one	CPU	core	and	process	there	with	preemption	off
• Not	supported	for	generic	XDP	today

• Some	pain	points	seen	by	others:
• https://mbertrone.github.io	›	documents	›	18-eBPF-experience



systemd-resolved

34



Systemd-resolved	DNS	stub

35

systemd-resolved
DNS	stub	=	on

lo enp0

/etc/resolv.conf
nameserver=127.0.0.53

127.0.0.0/8 10.5.5.3/24

Container	(net_ns X,	mount_ns A)

Host	(net_ns X,	mount_ns B)

/etc/resolv.conf
nameserver=127.0.0.53

App App

LAN

resolved.conf
[Resolve]
DNS=10.5.5.5
DNS=8.8.8.8



Systemd-resolved	DNS	stub,	2nd net_ns

36

systemd-resolved
DNS	stub	=	on

lo enp0

resolved.conf
[Resolve]
DNS=10.5.5.5
DNS=8.8.8.8

/etc/resolv.conf
nameserver=127.0.0.53

127.0.0.0/8 10.5.5.3/24

Container	(net_ns X,	mount_ns A)

Host	(net_ns X,	mount_ns B)

/etc/resolv.conf
nameserver=127.0.0.53

App App

LAN

/etc/resolv.conf
nameserver=127.0.0.53

Container	(net_ns Y,	mount_ns C)

App

lo veth ipvlan

enp0

Other	”lo”	net_device
(DNS	packets	are	
dropped here)



Will	this	work?

37

systemd-resolved
DNS	stub	=	on

lo enp0

resolved.conf
[Resolve]
DNS=10.5.5.5
DNS=8.8.8.8

/etc/resolv.conf
nameserver=128.221.255.53

127.0.0.0/8 10.5.5.3/24

Container	(net_ns X,	mount_ns A

Host	(net_ns X,	mount_ns B)

/etc/resolv.conf
nameserver=128.221.255.53

App App

LAN

/etc/resolv.conf
nameserver=128.221.255.53

Container	(net_ns Y,	mount_ns C)

App

lo veth

ipvlan

enp0

127.0.0.0/8

128.221.255.53/24

veth

128.221.255.1/24



No…

38

• 127.0.0.53:53	is	not	configurable
• The	IP	address	is	hard-coded	in	systemd-resolved



The	first	attempt	to	solve	this	- BPF

39



No	luck

40

• Before	bind(),	it	binds	to	the	“lo”	device	via	SO_BINDTOIFINDEX
• SO_BINDTODEVICE	in	the	previous	version

• Even	though	the	BPF	program	changed	the	source	IP,	socket	still	has	
sk_bound_dev_if ==	1

• UDP	packets	are	not	delivered



Bind	to	different	device	from	BPF

41

• BPF_PROG_TYPE_CGROUP_SOCK
• BPF_CGROUP_INET_SOCK_CREATE	– too	early	to	change	at	creation	time
• BPF_CGROUP_INET4_POST_BIND	– can’t	access	bound_dev_if here

• BPF_PROG_TYPE_CGROUP_SOCK_ADDR
• BPF_CGROUP_INET4_BIND	- changed	the	bound	device	here
• Extended	the	ctx (is	that	right	way?	or	better	do	sock	lookup?)

• In	kernel	5.3,	there	is	setsockopt/getsockopt BPF	hooks
• Didn’t	try	them	yet



Still	no	luck

42

• After	changing	the	bound	device	for	the	socket,	systemd-resolved	started	seeing	
the	UDP	packets!

• But	it	immediately	dropped	them	all	because	both	source	and	destination	IPs	
were	not	127.x.y.z

• Good	example	of	defensive	programming,	but	bad	for	us…



The	second	attempt	- iptables

43

• The	above	will	not work	if	systemd-resolved	binds	the	socket	to	the	device
• Final	thing	- clear	sk_bound_dev_if from	BPF	program	attached	to	

cgroup/bind4
• Should	be	possible	to	skip	setting	it	vs.	clearing	it	in	5.3



Success

44



Wait…success?

45
P.S.	Don’t	blame	systemd; it	works	as	designed.



To	bind	or	not	to	bind?

46



Interface	selection

47

• PBR	usually	works	fine
• but	for	some	apps,	it’s	problematic	to	do	the	explicit	bind



bpf_bind()

48

• We	can	attach	a	BPF	program	to	cgroup and	hook	into	connect/sendmsg path
• Context	provides	information	about	where	an	app	is	connecting	to
• We	can	pick	source	address	(but	not	port)	and	bind	to	it

• Most	apps	are	not	aware	and	need	no	modification
• Selection	may	be	flexible

• Can	also	bind	to	the	device
• bound_dev_if is	available	from	BPF_CGROUP_INET_SOCK_CREATE

App

Cgroup A

App

Cgroup BBPF	
prog

enp0 enp1

BPF	
prog App

Cgroup C

enp2 enp3

App

BPF	bind	to	source	IP	+	PBR BPF	bind	to	device Normal	bind	by
app	+	PBR

No	bind,	main	RT	lookup



Yet	another	net_ns use-case

49



Simple	interface/IP	hiding	trick

50

Linux	VM

vNIC
MAC=M1

Guest
agent

Internal	
vSwitch

Other	net_ns

macvlan
mode=passthru

MAC=M1

veth
MAC=M2

veth2
MAC=M3

Int_IP2

Int_IP2

Apps
IP1 IP2

Main	RT
Int_IP2	via	IP2	dev	veth

SNAT	to	
Int_IP2



Thanks!

51



Q&A

52


