
Evgeniy Paltsev

PaltsevEvgeniy@gmail.com

Linux Piter 2019, October 5, 2019

Self modifying code in Linux kernel –

what where and how

© 2019 Synopsys, Inc. 2

Evgeniy Paltsev

• Synopsys ARC team member

• Development, porting and maintenance of open-source projects for

Synopsys ARC processors architecture

• Main focus is Linux kernel and U-Boot (drivers and platform support)

with journeys to other projects like Weston, Buildroot, uClibc-ng, etc

© 2019 Synopsys, Inc. 3

$ objdump --section-headers vmlinux

Sections:

Idx Name Size VMA LMA File off Algn

0 .vector 00002000 90000000 90000000 00002000 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA

1 .init.text 000196d8 90220000 90220000 00222000 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE

2 .init.data 00005358 902396e0 902396e0 0023b6e0 2**5

CONTENTS, ALLOC, LOAD, DATA

3 .data..percpu 00006980 90240000 90240000 00242000 2**7

CONTENTS, ALLOC, LOAD, DATA

4 .text 004a82a8 90248000 90248000 0024a000 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE

READONLY

© 2019 Synopsys, Inc. 4

Agenda

• Real use-cases for self modifying code in Linux kernel

• Deep dive – into static branches implementation for ARC

© 2019 Synopsys, Inc. 5

Mandatory cute / funny picture

© 2019 Synopsys, Inc. 6

Real use-cases for self modifying code

in Linux kernel

© 2019 Synopsys, Inc. 7

Kernel modules

• Pieces of code that can be dynamically loaded

and unloaded into the kernel

• Extend the functionality of the kernel without the

need to reboot the system

• We modify both kernel (by adding external code)

and module code (by load-linking)

© 2019 Synopsys, Inc. 8

• Several architectures rewrite arch-specific

code on early init phase to support HW with

different

– bugs

– feature level

– configuration

in one image.

• Less overhead

Architecture-specific code rewriting

© 2019 Synopsys, Inc. 9

Making changes in code we’ll execute is fine

Making changes in code we execute right now is way more

interesting

© 2019 Synopsys, Inc. 10

• Live kernel patching without system restart

– apply kernel-related security updates

• Uses function call redirections (through Ftrace)

Livepatch

© 2019 Synopsys, Inc. 11

• Hooking Linux kernel functions to

– monitor/trace events

– collect debugging info

– collect performance info

– change execution path

• Allows to install pre-handlers / post-handlers for

– kernel instructions

– function-entry

– function-return

Kprobes

© 2019 Synopsys, Inc. 12

Kernel debugger

• Allows to

– Set breakpoints

– Check & modify data structures/memory/registers

– Control kernel running flow

• May be used with

– External GDB front-end (connected through serial)

– Internal KDB front-end

• Questionable – reuse kernel code to debug kernel

code

• Some features may modify kernel code –

i.e. breakpoints

KGDB

© 2019 Synopsys, Inc. 13

The idea is to optimize branches where

– condition changes rarely

– branch itself is in hot codepath

Example:

Static branches

if (hw_feature_exists())
handle_feature();

© 2019 Synopsys, Inc. 14

Deep dive

• Examples are based on my static branches

implementations for ARC

• Patches are under final review, most likely

to be applied after minor fixies:

https://lkml.org/lkml/2019/7/18/374

https://lkml.org/lkml/2019/7/18/374

© 2019 Synopsys, Inc. 15

• Originally – for use in tracepoints enabling / disabling code

• Now used in:

– Tracepoints

– Dynamic printk

– Scheduler

– Memory management

– Network code

– …

Static branches – use cases

© 2019 Synopsys, Inc. 16

• Supported in different architectures (v5.3 kernel):

– x86 / x86_64

– ARM / ARM64

– mips

– parisc

– powerpc

– s390

– sparc

– xtensa

Static branches – supported in major architectures

© 2019 Synopsys, Inc. 17

Static branches – implementation for ARC

Original idea – to make code faster

In our case – to make maintainer happy

© 2019 Synopsys, Inc. 18

Static branches – implementation

Regular branch:

© 2019 Synopsys, Inc. 19

Main idea – to switch

between branches of ‘if’

statement by replacing

BRANCH instruction

with NOP (or vice versa)

Static branches – implementation

© 2019 Synopsys, Inc. 20

Regular branches: Static branches:

• Bonus: we don’t need to change anything in the code if we don’t support static

branches (or have them disabled)

Static branches – user interface

bool branch_condition = true;

if (branch_condition)
true_payload();

else
false_payload();

branch_condition = false;

DEFINE_STATIC_KEY_TRUE(cond);

if (static_branch_likely(&cond))
true_payload();

else
false_payload();

static_branch_disable(&cond);

© 2019 Synopsys, Inc. 21

• Define

– JUMP_LABEL_NOP_SIZE

– struct jump_entry

• Implement functions

Static branches – implementation interface

arch_jump_label_transform
arch_static_branch
arch_static_branch_jump

© 2019 Synopsys, Inc. 22

• We have 32-bit NOP and 32-bit BRANCH

• All we need to do – replace one 32-bit instruction

with another. Atomically.

• It’s easy!

• We simply write the instruction to its address:

Static branches – implementation

*instruction_address = NOP_32BIT;

© 2019 Synopsys, Inc. 23

• Ooops: compiler can split our single 32-bit write for

several small writes (i.e. two 16-bit writes)

• We don’t have atomic update anymore.

• Solution:

Static branches – implementation

WRITE_ONCE(*instruction_address, NOP_32BIT);

© 2019 Synopsys, Inc. 24

• Ooops: we have caches. And instruction cache isn’t

coherent with data cache.

• No one knows when code will be really updated.

• Solution:

Static branches – implementation

WRITE_ONCE(*instruction_address, NOP_32BIT);
flush_data_cache_line();
invalidate_instruction_cache_line();

© 2019 Synopsys, Inc. 25

• Ooops: we are in 2019. And we have multicore CPU.

• No one knows when code will be really updated for

other CPUs.

• Solution:

Static branches – implementation

WRITE_ONCE(*instruction_address, NOP_32BIT);
flush_data_cache_line();
on_each_cpu(invalidate_instruction_cache_line);

© 2019 Synopsys, Inc. 26

• Ooops: instruction replace may be
non-atomic if instruction cross cache
line boundary

• We may execute partially updated
instruction (2byte old + 2byte new)

• Solution:

Force instruction to not cross cache line

- ".bundle_align_mode“

- ".balign"

assembler directives in

- arch_static_branch()

- arch_static_branch_jump()

Static branches – implementation

© 2019 Synopsys, Inc. 27

We started from simple writing of 32bit value

And ended up with

• manual cache management

• inter-processor communications

• special code alignment

© 2019 Synopsys, Inc. 28

• Ooops: circular dependencies

I.e. we use static branches to optimize cache ops but they

are used in branch patching code.

• Ooops: static branches in early code

I.e. we want to update branch when static branches core isn’t

initialized.

• Ooops: interactions between different self-modifying

code subsystems

I.e. we want to set breakpoint to our branch update

instruction? - not a good idea.

Static branches – implementation

© 2019 Synopsys, Inc. 29

Self modifying code in Linux kernel

• Powerful tool

• Use responsibly

• Don't rewrite yourself

© 2019 Synopsys, Inc. 30

Thanks!

Questions?

© 2019 Synopsys, Inc. 31

The slides [3, 10, 13-16, 21, 38, 29] include images which are based on or includes content from

xkcd.com. Content from xkcd.com is licensed under the Creative Commons Attribution-

NonCommercial 2.5 license

The slide [5] includes image from http://www.flickr.com/photos/74743437@N00/3577220863/

which is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Generic

license

Images licensing notes

https://xkcd.com/
http://www.flickr.com/photos/74743437@N00/3577220863/

