
Zephyr OS: Towards
Functionally Safe Open
Source RTOS

Andrei Laperie

First release Feb 2016, Apache 2.0

All-in-one solution, not just kernel

Highly modular, using Kconfig

Minimal footprint 8K

Bluetooth LE controller/host, LE Mesh

Native IPv4/6, Thread, 802.15.4,

Zephyr: Overview

2

Ecosystem Support

Platform

Radios

Power Management

Kernel Services / Schedulers

Sensors Crypto HW

I2
C

S
P

I

U
A

R
T

G
P

IO

… F
ile

S
y
s
te

m

L
o

g
g
in

g
/

D
e
b

u
g

D
a
ta

b
a

s
e
/

P
ro

p
e

rt
ie

s

C
ry

p
to

IP
C

Flash

S
e

n
s
o

rs

..
.

Low Level API

D
e
v
ic

e

M
g

m
t

802.15.4

IPv6/IPv4

TCP/UDP

BLE Wi-FiEthernet ...

6LoWPAN

T
h

re
a

d

TLSDTLS

CoAPHTTPMQTTLWM2M…

Application

Smart Objects / High Level APIs / Data Models

K
e

rn
e

l
O

S
 S

e
rv

ic
e
s

A
p

p
lic

a
ti
o
n

S
e

rv
ic

e
s

• https://github.com/zephyrproject-rtos

• Comprehensive CI (~5x1h jobs)

• Area owners/maintainers

• Fixed release cadence

• First Long-Term Service release done maintained

• Test Case management @ Testrail.io

• Automated test suites for Networking and Bluetooth

Zephyr: Development Process

https://github.com/zephyrproject-rtos

Zephyr: Wide Industry Support

4

Platinum

Members

Silver

Members

Zephyr*: Use Cases

5

Core 1

Single Core SoC

RTOS

App App

Single Core MCU Supported

on Xtensa* and x86_64

SMP

Core 1

SoC

RTOS

App App

Core 2

*Other names and brands may be claimed as the property of others.

AMP

Core 1

Multicore SoC

Linux*

App App

Core 2

RTOS

App

Supported

with OpenAMP

App

Hypervisor Guest

Core 1

Hypervisor

Zephyr

App App

Core 2

Linux

App

Supported

with ACRN

App

Zephyr: More Than 170 Supported Boards

6

Arduino 101*

FRDM K64F

Intel® Quark™ Processor

Intel® Galileo

Arduino* Due

Minnowboard

STM* Mini A15

Nucleo 103RB

STM32* Olimexino

Synopsys* ARC EMSK

MAX® 10 FPGA

NRF52

NRF51

Seeed* Carbon

Seeed* Nitrogen

Nucleo 401RE

Nucleo64 L476RG

Hexiwear*

TI* Launchpad Wi-Fi

ARM* V2M Beetle

Nucleo F411RE

ARM* V2M MPS2

FRDM-KW41Z

BBC Micro:bit* Redbear BLE Nano

Zedboard Pulpino

Nucleo F334R8

STM32* 10c

STM32* 373c

NRF52 pca10040

Atmel* SAM

E70

tinyTILE

Products Running Zephyr Today

7
Intellinium Safety Shoes

Rigado IoTGateway
ProGlove

Scanning Gloves

Ellcie-Healthy Smart

Connected Eyewear

hereO

SmartwatchGrush Gaming

Toothbrush

GNARBOX 2.0 SSD

Adero tracking devices

Anicare reindeer tracker

RUUVI node

GEPS

Point Home Alarm

HereO Core Box

Zephyr In Open Source RTOS Landscape*

8

#2

Total

Contributors

#2

Total

Commits

#1

Commits to Master

(last 30 days)

Rank RTOS #

1 mbed OS 532

2 Zephyr 509

3 nuttX 315

Rank RTOS #

1 nuttX 39,013

2 Zephyr 32,206

3 mbed OS 25,574

Rank RTOS #

1 Zephyr 900

2 mbed OS 269

3 RIOT 165

* as of 2019/7/25

Functional Safety And
Zephyr OS

Applicable to active physical systems

Functional Safety

Ability of the system to react on potentially
dangerous condition by using safety function and
reduce the risk.

Example

The detection of smoke by sensors and the ensuing
intelligent activation of a fire suppression system

Functional Safety: Introduction

Fault

Random
due to physical causes and
only apply to the simple
hardware components
within a system. For
example, bit flips because of
Alpha particles

Systematic
produced by human error
during system development
and operation. For example,
a design error.

Controlled in
Hardware (reservation
etc)

Controlled in
Software and
Hardware

Functional Safety Standards

IEC 61508 Generic Standard

IEC 61511
Industrial
processes

IEC 61513
Nuclear
industry

IEC 62061
Machinery

Safety

EN
50126/8/9

Railways

ISO 26262
Automotive

DO178B/C
Aeronautics

ECSS Space
(ESA)

IEC 62304
Medical

“The nice thing about standards is that there are so many of them to choose from.” [Tanenbaum]

No Open Source as a Feature

No Open Source as a feature?

• We want to see Zephyr used in safety-critical contexts:

• Medical

• Industrial/manufacturing

• Transportation/automotive

• Power generation

• Aerospace

• No Open Source OS is safety certified

Why Consider Safety Standards For Zephyr?

13

Phase-oriented Lifecycle, per IEC
61508

• To control systematic failures

• Every phase has specific
requirements

Functional Safety And Software

There is no known way to prove the absence of failures in reasonable complex software

For 61508 certification of as pre-existing software (IEC 61508-
3, 7.4.2.12, “Route 3S”) , assessment needed for:

• Requirements specification and traceability

• Documentation on architecture, design and modules, coding
standard

• Testing on module and integration level

• Validation of requirements

• Tools, reference hardware configuration

Certifying Existing Software

Photo https://pixabay.com/photos/evaluation-exam-passed-list-1516644/

https://pixabay.com/photos/evaluation-exam-passed-list-1516644/

The process of creating the software is:

▪ Functional Safety requires V model/phases

▪ Detailed specification of features

▪ Comprehensive documentation

▪ Traceability from requirements to source code

▪ Number of committers and information known
about them

▪ Certification authority not familiar with open
source development

Open Source And Safety Certification

16Photo: https://pixabay.com/photos/florence-market-outdoor-church-1964638/

Cathedral Bazaar

Open source software is not a problem in
itself

https://pixabay.com/photos/florence-market-outdoor-church-1964638/

• Snapshotting a Source Tree (branch), validating it then controlling updates is a viable
approach to software qualification

• Build a cathedral on top of (or beside) the bazaar

• Getting supported feature set right is most important up front decision

• The more you support, the more documentation and testing you are going to provide

• Automate as much of the information tracking as you can

• Auto-generate documents from test and issue tracking systems

• Get proof of concept approval from a certification authority as early as possible

Our Approach

17Photo: https://pixabay.com/photos/florence-market-outdoor-church-1964638/

https://pixabay.com/photos/florence-market-outdoor-church-1964638/

▪ Initial scope

▪ Kernel

▪ Logging

▪ VFS

▪ Properties/database

▪ Device model

▪ Only using well-defined and
stable APIs

Scope Of Certification: Zephyr Kernel + Services

18

Platform

Kernel Services / Schedulers

Low Level API (Kernel, Services)

Application

Zephyr* Public API

Architecture Interface

Radios Sensors Crypto HW

I2
C

S
P

I

U
A

R
T

G
P

IO

…

V
ir

tu
a

l
F

ile

S
y
s
te

m

L
o

g
g

in
g

/

D
e
b

u
g

D
a
ta

b
a
s
e
/

P
ro

p
e
rt

ie
s

C
ry

p
to

IP
C

Flash

S
e

n
s
o

r

S
u

b
s
y
s
te

m

..
.

k
e
rn

e
l

O
S

 S
e
rv

ic
e
s

Power Management Interrupt Handling Common arch interface

Device Model

▪ An auditable code base shall be established from a subset

of Zephyr* OS features.

▪ Both code bases shall be kept in sync from that point

forward.

▪ More rigorous processes (necessary for certification) will

be applied before new features move into the auditable

code base.

Zephyr* Approach: Auditable Code Base

19*Other names and brands may be claimed as the property of others.

Development

Long Term
Support “Stable”

Auditable

Releases

Product ready

Product ready
(Pre-certified)

Audit Ready
Documentation

Safety & Security Process

Community and Member
Contributions

▪ Needs formal requirements

▪ Multiple levels, satisfaction links from
decomposed requirements

▪ Verification links from related tests

▪ Implementation links from user stories

Requirement Traceability

20

Zephyr status

▪ WIP

▪ High-level requirements are being
created (post-factum, manually)

▪ Decomposition is being created

▪ Connection between requirements and
code will be partially automated based
on the test coverage analysis

▪ Code is available publicly and can be scrutinized by
anyone.

▪ Code reviews and direct user feedback help improve
quality

However…

▪ Do we have the right set of reviewers?

▪ Who gets to have the final say?

▪ How do we guarantee that the reviewer is
aware of safety implications?

▪ For how long should changes be reviewed?

Code reviews

21

Zephyr status

▪ Process WIP

▪ Current assumptions:

▪ committers to Auditable to
be trained for FuSa

▪ Well-defined list of
module responsible

▪ Certification does not mandate MISRA-C
compliance

▪ … but it is a de-facto standard for embedded
safety, last release 2012

▪ ~180 guidelines. Some are mandatory, some are
required unless a deviation report duly filed,
some are advisory

▪ Commercial! (15 GBP per copy)

▪ Some rules are controversial

▪ Require right tooling to validate

Coding Standard: MISRA-C

22

Zephyr status

▪ Standard is WIP, based on Misra-C, Cert-C and JPL
standards

▪ Deviations are key

▪ Rigorous standard compliance will have limited scope

▪ Will be part of Zephyr contribution guidelines and CI

▪ Some MISRA-C rules already applied to Zephyr kernel
using Coccinelle

▪ Quality Management System is a mandatory expectation
for software across the industry.

▪ Software QMS is not an additional requirement caused
by functional safety standards.

▪ Functional safety considers QMS as an existing
pre-condition.

▪ Quality Managed (QM) status should be the
aspiration of any open source project, regardless
of functional safety or certification goals.

Quality Management

23

▪ Certifying Open Source OS for functional safety and keeping it open:

▪ Challenging

▪ Doable!

▪ Was never done before, we are paving the way

▪ Companies in Zephyr working together to make it

▪ Working hard to ensure project’s community buy-in

24

Summary

THANK YOU!

25

BACKUP

Source: Data as of 2019-4-25 from github (* from openhub.net)

Source: Data extracted on 2019-4-25 from github (* from openhub.net)

