Zephyr OS: Towards
Functionally Safe Open
Source RTOS

Andrei Laperie

Zephyr: Overview

First release Feb 2016, Apache 2.0

Smart Objects / High Level APIs / Data Models A“. . . .
-in-one solution, not just kernel
T owew | worr | e | oo o

Highly modular, using Kconfig
Minimal footprint 8K

Application
Services
1

—

IPv6/IPv4
6LoWPAN
g 500 15 4 - Bluetooth LE controller/host, LE Mesh
3 Native IPv4/6, Thread, 802.15.4,
)
) EE L
28]8 g Ecosystem Support
_I cU S
ae
- (intel) RC CNios I
T Kernel Services / Schedulers Synopsys Processor
f:’ Power Management ’1
‘ . ARM D= wrse
atform N
Sensors Crypto HW \\““}—E

\ I

Zephyr: Development Process

.E ° Review required Show all reviewers
At least 1 approving review is required by reviewers with write access. Learn more.

L 4pending reviewers

* https://github.com/zephyrproject-rtos O et v s

. . X ..M Documentation — Checks fai d no. 1301688; Details |-
° mprehensiv | (~5x1h
X & Shippable — Run 52104 status is FAILED. Details
M codeowners — Checks passed (build no. 1301688 Detai
L] L]

[) A re a OW n e rS/ m a I n ta I n e rS v+ Device tree — Checks skipped (build no. 1301688) Details

..M Gitlint — Checks passed (build no. 1301688 tails

u s B AantiteiEmaile — rharke naccad ihoild na 120128
* Fixed release cadence ng
o Merging is blocked
Merging can be performed automatically with i i

* First Long-Term Service release done maintained

* Test Case management @ Testrail.io

« Automated test suites for Networking and Bluetooth ——=%

...........

https://github.com/zephyrproject-rtos

Zephyr: Wide Industry Support

renpos | (i ntel) oticon W

PEOPLE FIRST

NORDIC [\ I\

rrrrrrrrrrr ings

SYNoPSYS aF ™ 1 Texas
Silver S22 INSTRUMENTS

Members

_BOSE & siFive fg)antmlcro

H

Zephyr*. Use Cases

AMP SMP Hypervisor Guest

Single Core MCU Supported Supported Supported
with OpenAMP on Xtensa* and x86 64 with ACRN

App

RTOS

Single Core SoC

Core 1l

*QOther names and brands may be claimed as the property of others. @-

Zephyr: More Than 170 Supported Boards

<

ety 43
LB ey
- ®

Nucleo64 L476RG Nucleo F411RE NRF52 pcal10040 Nucleo F334R8

O
&2 & ’
> =

T

Nucleo 401RE Hexiwear* Atmel* SAM

E70

Minnowboard

Intel® Galileo Synopsys* ARC EMSK NRF52 Seeed* Carbon BBC Micro:bit*

Vigy g

Intel® Quark™ Processor STM32* Olimexino STM* Mini A15 Seeed* Nitrogen ARM* V2M Beetle Zedboard Pulpino FRDM-KW41Z tinyTILE

Products Running Zephyr Today

£

(-] E ™ =

Adero tracking devices RUVU’VI node pumm—
-

Ellcie-Healthy Smart
Connected Eyewear
Rigado loTGateway

——

ProGlove
Scanning Gloves

Point Home Alarm

GNARBOX 2.0 SSD

<SMART FOOTWEAR DESIGNED BY INTELLINIUM>

Celf modem 4G LTEMIMNI fallback 2G.
Left/ Right vibrating motors
External Force Lo g
Sensor) £
> . < 1P 68 & ATEX
E: i e 2WCo+70°C
1 ® 2 Behaviorsl patter detection
GSM antenna . Bluetooth Low Energy S
4 \ Internal Force
a3 Sensor
.

hereO |
HereO Core Box

Grush Gaming Smartwatch i
Intellinium Safety Shoes

. GusA

Toothbrush

Zephyr In Open Source RTOS Landscape*®

Total Total Commits to Master
Contributors Commits (last 30 days)
Rank | RTOS # Rank |RTOS # Rank | RTOS #
1 mbed OS | 532 1 nuttX 39,013 1 Zephyr 900
2 Zephyr 509 2 Zephyr 32,206 2 mbed OS | 269
3 nuttX 315 3 mbed OS | 25,574 3 RIOT 165

*as of 2019/7/25

Functional Safety And

Functional Safety: Introduction

Applicable to active physical systems
Functional Safety

Ability of the system to react on potentially
dangerous condition by using safety function and
reduce the risk.

Example

The detection of smoke by sensors and the ensuing
intelligent activation of a fire suppression system

Fault

T

Random

due to physical causes and
only apply to the simple
hardware components
within a system. For
example, bit flips because of
Alpha particles

Systematic

produced by human error
during system development
and operation. For example,
a design error.

Controlled in
Hardware (reservation
etc)

Controlled in
Software and
Hardware

H

Functional Safety Standards

IEC 61508 Generic Standard

[
[
[
[
—

E /l--

IEC 61511
Industrial
processes

IEC61513
Nuclear
industry

Y

IEC 62061
Machinery
Safety

EN
50126/8/9
Railways

~

ISO 26262
Automotive

DO178B/C
Aeronautics

ECSS Space
(ESA)

IEC 62304

Medical |
|
|

/

“The nice thing about standards is that there are so many of them to choose from.” [Tanenbaum]

H

-

ww e w AV VNS,
Ethernet, 802 1 5.4 radio, and more

el B
4N
7
—atly

B ——

=

COMMON CRITERIA [
CERTIFIED
EAL4+

2
No Open Source as a feature:

I Why Consider Safety Standards For Zephyr?

« We want to see Zephyr used in safety-critical contexts: —| Data
 Maedical
Human-Machine
.
* Industrial/manufacturing |! I Interface
1>‘<

 Transportation/automotive

—> Controller
« Power generation l
 Aerospace Sensor g @Aﬂuatur

 No Open Source OS is safety certified ‘

Process of the

real Wnr!r

Functional Safety And Software

-0Ori I E/E/PE syst Validati - :
Phase-oriented Lifecycle, per IEC oy | ? Software safety alidation Validation | g Validated
requirements T i
61 508 se:ecification spectlication

Integration testing

Il

* To control systematic failures

Software (components,
. E/E/PE system | 4l | architecture m-=ss=ss=s=sss-s--------------—1 subsystems and
« Every phase has specific architecture programmable

requirements
L Software |q-------=----=-n-nnux { Integration]

testing (module)

Module
testing

—----# Verfication Coding

[—r Qutput

There is no known way to prove the absence of failures in reasonable complex software

H

Certifying Existing Software

For 61508 certification of as pre-existing software (IEC 61508-
3,7.4.2.12, "Route 35"), assessment needed for:

* Requirements specification and traceability

* Documentation on architecture, design and modules, coding
standard

* Testing on module and integration level
« Validation of requirements

* Tools, reference hardware configuration

Photo https://pixabay.com/photos/evaluation-exam-passed-list-1516644/

N

https://pixabay.com/photos/evaluation-exam-passed-list-1516644/

Open Source And Safety Certification

Open source software is not a problem in |

itself
The process of creating the software is: Cathedral Bazaar
* Functional Safety requires V model/phases ‘ ‘ ‘

» Detailed specification of features

= Comprehensive documentation ‘ ‘ . ‘ ‘ ‘
* Traceability from requirements to source code “ ‘ . . ‘ ‘

= Number of committers and information known

about them .“ ‘ ‘ ‘ ‘

= Certification authority not familiar with open
source development ‘ ‘

Photo: https://pixabay.com/photos/florence-market—outdoor—cﬂ@l-

https://pixabay.com/photos/florence-market-outdoor-church-1964638/

Our Approach

* Snapshotting a Source Tree (branch), validating it then controlling updates is a viable
approach to software qualification

« Build a cathedral on top of (or beside) the bazaar
* Getting supported feature set right is most important up front decision

 The more you support, the more documentation and testing you are going to provide
* Automate as much of the information tracking as you can
* Auto-generate documents from test and issue tracking systems

 Get proof of concept approval from a certification authority as early as possible

Photo: https://pixabav.com/photos/florence-market—outdoor—cﬂ@l_

https://pixabay.com/photos/florence-market-outdoor-church-1964638/

Scope Of Certification: Zephyr Kernel + Services

. il scope
+ Kernel

. Low Level API (Kernel, Services)
= lLogging

= VFS

Device Model

OS Services

System
Logging/
Debug
Database/
Properties
Sensor
Subsystem

Q
=
©
=]
E
>

= Properties/database

Kernel Services / Schedulers

Architecture Interface

u Only USlng Weu-deflned and Power Management Interrupt Handling Common arch interface
stable APIs

= Device model

kernel

Platform

Sensors Crypto HW

H

Zephyr* Approach: Auditable Code Base

SEHLL L i S = An auditable code base shall be established from a subset

[] of Zephyr* OS features.

Development ms) Releases = Both code bases shall be kept in sync from that point
l forward.

LongTerm b product ready = More rigorous processes (necessary for certification) will
Support “Stable
| be applied before new features move into the auditable

lSafety&Securlty Process Code base_

Auditable =) Product ready
(Pre-certified)

Audit Ready
Documentation

e —

*QOther names and brands may be claimed as the property of others. @-

Software safety Validation
requirements

specification

Validation Validated
testing I‘ software

Integration testing
(components,
subsystems and

programmable
electronics

Requirement Traceability

Software
architecture

Software -
= Needs formal requirements _Q

Module
design I“" o
1

Integration
testing (module)

T
&)
E]
(3]

= Multiple levels, satisfaction links from
decomposed requirements

Zephyr status
WIP

= Verification links from related tests

* |[mplementation links from user stories High-level requirements are being
created (post-factum, manually)

Decomposition is being created

Connection between requirements and
code will be partially automated based
on the test coverage analysis

Code reviews

= Code is available publicly and can be scrutinized by

anyone.

= Code reviews and direct user feedback help improve L[E— }J
quality

However... Zephyr status

= Do we have the right set of reviewers? = Process WIP

= Who gets to have the final say? = Current assumptions:

» How do we guarantee that the reviewer is = committers to Auditable to
aware of safety implications? be trained for FuSa

= For how long should changes be reviewed? Well-defined list of

module responsible

Coding Standard: MISRA-C

= Certification does not mandate MISRA-C
compliance

= .. butitisade-facto standard for embedded
safety, last release 2012

Zephyr status

= ~180 guidelines. Some are mandatory, some are Stangargl is WIP, based on Misra-C, Cert-C and JPL
. .- . standards
required unless a deviation report duly filed,

I Deviati k
some are advisory eviations are key

Rigorous standard compliance will have limited scope

= Commerciall (15 GBP per copy)

Will be part of Zephyr contribution guidelines and Cl

= Some rules are controversial ﬁgwgclé/gcscl?ﬁéﬁerules already applied to Zephyr kernel

= Require right tooling to validate

Quality Management

= Quality Management System is a mandatory expectation
for software across the industry.

Software safety | Validation

requirements
specification

Validation

‘ Validated
1 | software

= Software QMS is not an additional requirement caused
by functional safety standards. @] achitedure e S

Integration testing
(components,
subsystems and
programmable
electronics

" Functional safety considers QMS as an existing — | ==)
pre-condition. "[svstem desmn' testing (module)

Module
= testing

Coding]7

= Quality Managed (QM) status should be the
aspiration of any open source project, regardless
of functional safety or certification goals.

Summary

Certifying Open Source OS for functional safety and keeping it open:
= Challenging

= Doablel
Was never done before, we are paving the way

Companies in Zephyr working together to make it

Working hard to ensure project’'s community buy-in

THANK YOU!

BACKUP

Operating System Contributors

600 w= == AliOS-Things

=== Contiki

—— Contiki-NG

= =sns FreeRTOS*

== == Amazon-FreeRTOS
= == |iteOS

400 mbed 0S
e MyNewt
= wm UtEX*
m—— RIOT
s RT-Thread
ssxs Tiny 0OS

200 == mm Tizen RT

Number of Contributors

— Zephyl"

Source: Data as of 2019-4-25 from github (* from openhubm

Total Commits by Operating System

40000 m= == AliOS-Things
_______________________________ == == Contiki
__________ e Contiki-NG
=== FreeRTOS*
== == Amazon-FreeRTOS
== == |jteOS
mbed 0S

30000

s MyNewt

mn wm nuttX*
___,_,.-—l-'""'-__
RIOT

20000

s RT-Thread
= Tiny OS
ms == Tizen RT

Commits

— Zephyr
10000

— - —
— o —
———— o ——
—— -
— - ——
———— -

Source: Data extracted on 2019-4-25 from github (* from openhub.net)

H

