
Designing a Trusted Execution
Environment in Zephyr OS

Ioannis Glaropoulos

Agenda

• Background

• Embedded device security considerations

• Trusted Execution and ARM TrustZone-M fundamentals

• Trusted Execution APIs and implementation in Zephyr OS

• Building Trusted Firmware in Zephyr OS

• Future plans

11/03/2018Linux Piter'18 2

Nordic Semiconductor vision

11/03/2018Linux Piter'18 3

PAN
(10m+)

LAN
(100m+)

WAN
(1km+)

Things we wear

… we carry around

… around us at home

… around us at work

… around us in the city

… around us in the country side

Things - not infrastructure, … not PCs,
… not phones … not tablets

A leading vendor of wireless connectivity and embedded processing

solutions for internet connected things

Nordic as an IoT enabler

11/03/2018Linux Piter'18 4

Wearables

PC/phone/tablet HID

Remote controls

Gaming

Toys

Healthcare

Beacons

Smart Home

Wireless Charging

Payment/ID

Logistics/transport

Enterprise

automation

Industrial

automation(…)

Automotive Proximity tags

Established VerticalsEmergingLonger tail

▪ SOCs

▪ Software

▪ Protocol stacks

▪ SDKs

▪ Front-end APPs

▪ Development kits

Security in embedded devices: an important concern

• Are not tiny

• Typically ~100MHz clock, ~1MB flash, ~100kB RAM, sensors, interfaces

• Are connected & remotely accessible

• To/from the internet, to/from each-other

• Store & share sensitive information

• May be part of (very) large systems

• May compromize system-level security (even if a single device is compromized)

Embedded Devices

• Is complex, buggy, and is being updated multiple times

• Is developed by multiple entities

• Is vulnerable to all kinds of mordern tools that can read/write/corrupt/expose it

Embedded Software

11/03/2018Linux Piter'18 5

IoT sensor device threats

• Functional abuse (e.g. stack overflows, un-defined commands, etc.)

• Expose secrets / keys to un-authorized entities

• Corrupt root-of-trust establishment during device boot

• Load an un-authorized application firmware image

• Expose sensor data to un-trusted entities

• Corrupt notion of system/current time

• Un-authorized access to device management / system logs

Example threats

11/03/2018Linux Piter'18 6

MQTT/TLS SPI

Application SW

System SW

Sensitive Data

BootloaderCloud service

Sensor

SOC

Trusted Execution Environments

• Sensitive data, keys, secrets, authorized-access

• Avoid system compromize due to device compromize

1. Data protection

• E.g. readback protection

• Avoid reverse engineering

2. Firmware protection

• Un-compromised execution of critical (trusted) functionality

• Protection from accidental/malicious un-trusted software

3. Operational protection

• E.g. obscure crypto operation

4. Communication protection

11/03/2018Linux Piter'18 7

TrustZone-M: TEE for ARM Cortex-M

• Secure (S), Non-Secure (NS) execution

• Address security → domain security

Dual processor state and resource attribution

• Security state transition: in (and only in) a predefined way

• S →NS : Non-Secure function calls with resource stacking and
clearing

• NS → S: Non-Secure callable entry functions

• Security fault mechanism to detect security violations

Hardware-based isolation

• Execution stacks

• Vector Tables

• MCU control blocks (MPU, NVIC, Faults, Control, etc.)

Resource «banking» (i.e. Double instances)

11/03/2018Linux Piter'18 8

ARM TrustZone-M: in depth

• Thread – Handler mode

• Privileged – Unprivileged mode

S/NS execution context orthogonal to

• Domain context-switch with register clearing (compiler)

• Hiding internal domain processing state

Seamless prevention of Secure content leaking
upon state transition

• Faults, Exceptions, HW interrupts

Configurable S/NS interrupt routing

• SecureFault and SecureHardFault

Dedicated exception for handling of security violations

• Security Attribution Unit (SAU)

• …or Implementation-Defined Attribution Unit (IDAU)

Dedicated IP

11/03/2018Linux Piter'18 9

Secure
State

Non-Secure
State

BLXNS to Non-secure func

BL to Secure ENTRY func

Secure
Services

Secure
Storage

Secure
Boot

Secure
Key mgmt

Secure
Attestation

Crypto
Service

S
ec

u
re

 E
N

T
R

Y
 A

P
I

S
ys

te
m

/ A
p

p
lic

at
io

n
s

Trusted Execution for ARM in Zephyr OS

What APIs to support?

• No reference implementation elsewhere 

• Begin with core-TrustZone functionality and ARMv8-M support ☺

What functionality to implement?

• How to build Zephyr applications with TEE?

• How to organize the device firmware?

• Integration with Zephyr build /configuration system (Kconfig, Device Tree)

How to use the functionality?

• Zephyr is a cross-architecture OS

• At least ARM and ARC architectures have support for TEE

How to abstract the APIs?

11/03/2018Linux Piter'18 10

Zephyr TrustZone-M – implementation

• Configuring security attributions for memory areas

• Evaluating security configuration

• Using ARMv8-M TT intrinsics

• For memory addresses/ranges/objects

• Interrupts’ management

• Priority boosting, S/NS routing

• Non-Secure function pointer registration

• Secure entry functions

ARM-only APIs for:

• With deep, all stacks’ inspection

Secure fault handling

• Cmake (compile options configuration)

• Linker

• Dedicated sections for Secure entry functions

• Symbol table generation for Secure entry veneers

Integration with Zephyr build system

11/03/2018Linux Piter'18 11

Building Zephyr applications with TEE

• Combined into single firmware image

• Secure firmware: mini-kernel, secure libraries (e.g. crypto). Typically: secure
bootloader

• Non-Secure firmware: full RTOS, drivers and user applications

Separate Zephyr builds for Secure (S) and Non-Secure (NS) images

• Secure ”non-aware” image

• By default in Secure mode

• Never transits to Non-Secure code execution

• Typically: first-stage bootloader

• Secure ”aware” image

• Configures security attributions

• Runs secure libraries

• Allows transition to Non-Secure code execution

• Implements SecureFault handling

• Non-Secure “aware” image

• Running in Non-Secure mode

• Shall not directly access secure MCU resources

• May only access the Non-Secure callable API

Firmware categorization

11/03/2018Linux Piter'18 12

Device firmware organization

Device Firmware

Device Boot Root-of-Trust DFU

Z
ep

h
yr

 K
er

n
el

Device Drivers

Applications

Protocol
Stacks

S
ec

u
ri

ty
M

an
ag

er

Secure
Services

Secure
Device
Drivers

Secure Data

• Immutable

• Implementing Root-of-Trust

• Minimal (Zephyr-built or bare-metal)

Secure ”non-aware”: Bootloader-0

• Upgradeable

• Security Management

• Secure applications

Secure “aware”: Bootloader-1

• Un-trusted application code

• Calling Secure services via Non-Secure Callable API

Non-Secure ”aware” : RTOS + Application

11/03/2018Linux Piter'18 13

Device boot
Keys

Security-aware boot-time configuration

• Affects drivers, libraries, protocol-stacks interracting with

Hardware, File Systems, etc.

HW description dependent on the security domain

• Device Tree Source (DTS) files are a common convention in Zephyr

to describe HW and boot time configuration

• Separate .dtsi descriptor files for Secure and Non-Secure

firmware images

• Secure / Non-Secure firmware image planing in DTS (Board, SOC)

• Use of DTS overlay files for over-writing DTS configuration

Made easy with Zephyr Device Tree

11/03/2018Linux Piter'18 14

Future plans – TEE abstractions in Zephyr

• Configuring & assessing security attributions for memories and
Kernel objects

• Managing Secure/Non-Secure core MCU resources

• MCU register blocks, faults, exceptions, priority boosting, etc.

• Peripheral security

• Access configuration

• Managing DMA

• Managing interrupt routing

Generic, cross-architecture APIs for

11/03/2018Linux Piter'18 15

Future plans – Secure Services in Zephyr OS

• Secure boot & Root of Trust implementation

• Key management

• Secure peripheral services

Secure applications natively supported in Zephyr

• Secure data storage

• Secure firmware upgrade

• Generic secure services’ API

Services (in or on top of Zephyr)

11/03/2018Linux Piter'18 16

Q/A

• Zephyr Project

• http://zephyrproject.org/

• Zephyr Github project for Trusted Execution

• https://github.com/zephyrproject-rtos/zephyr/projects/11

• ARM TrustZone-M

• https://www.arm.com/why-arm/technologies/trustzone-for-cortex-m

11/03/2018Linux Piter'18 17

http://zephyrproject.org/
https://github.com/zephyrproject-rtos/zephyr/projects/11
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-m

