Personal systems 000000

How fast is fast storage under Linux?

Paolo Valente

University of Modena and Reggio Emilia - Italy

November 3, 2018

Roadmap

- Driving drives at full speed with blk-mq
- But crashing with real server applications
- Or losing 80% of the speed if trying to control $\rm I/O$
- BFQ: a solution to get back 100% of the speed
 - And full control
- What about personal systems?
 - Without BFQ, very low responsiveness
 - Even with fastest storage
 - BFQ comes to the rescue: high responsiveness recovered

Driving at full speed •000	Server systems	Personal systems
	blk-mq	

- Highest-possible parallelism for maximum throughput
- We'll talk about I/O schedulers in a few slides

Driving	at	full	speed
0000			

Personal systems

Test drive

PLEXTOR PX-256M5S SSD

- 520 MB/s sequential read
- 73 KIOPS random read

- Mounted on an (old) ThinkPad W520
 - 2.4GHz Intel Core i7-2760QM as CPU
 - 1.3 GHz DDR3 DRAM

Driving at full speed	Server systems	Personal systems

Running fast even with sync random I/O ...

- Even with buffered sync 4KB random reads
 - I.e., every process issuing a single new read request only after the previous one is completed
- Throughput: 200 MB/s (50 KIOPS)

Great, let's use this speed for something useful

Servers

- Guarantee I/O bandwidth to
 - a set of clients (of any kind of service)
 - containers
 - virtual machines
 - ...
- For brevity, we will consider the case of a set of clients
- Personal systems
 - Start applications quickly
 - Playback audios/videos

Serving clients at maximum total speed!

- With, e.g.,
 - four clients doing sequential reads
 - one client doing random reads
- Total throughout: 513 MB/s

What about control?

• Let's check it with the first part of this demo: https://youtu.be/V6pXtwvfh4U

Personal systems 000000

... ooops

"Rowan Atkinson crashes McLaren F1 supercar into tree" BBC News, 5 August 2011

Driving at full speed 0000	Server systems	Personal systems
	Why?	

- If there is no I/O control, then
 - In case of contention, every I/O request of an unlucky process may have to wait for a lot of time before being served
 - Because the I/O stack and the drive itself prefer other requests
 - E.g., sequential I/O is highly preferred against random I/O

So *blk-mq* equipped with I/O schedulers

Driving at full speed	Server systems	Personal systems

I/O schedulers

- *blk-mq* tries to provide
 - low-latency
 - responsiveness
 - fairness
- Through I/O schedulers: BFQ, MQ-DEADLINE, NONE, KYBER

I/O policies

- I/O schedulers try to do the right thing automatically
- For some goals, this may not be enough
- One notable example is exactly
 - Guaranteeing a minimum bandwidth to every client of a service
- I/O policies are used for a goal like this
 - throttling and proportional share
 - they work on top of I/O schedulers
 - *throttling* is an independent mechanism
 - *proportional share* expects an appropriate proportional-share scheduler to implement the policy

Standard solution to control I/O

- BFQ implements the proportional-share policy in *blk-mq*
- But BFQ is still a newcomer
- Virtually no company knows much about proportional share on top of BFQ
- With *blk-mq*, throttling is the only Linux mechanism used for controlling I/O
- So let's solve our control problem with throttling
- Second part of the demo: https://youtu.be/V6pXtwvfh4U
 - Neglect BFQ results for the moment

What happened to the speed of the drive???

- 80% of the speed is thrown away by throttling
- Like if the drive was five times as slow!

Unsolvable problem? Let's see with BFQ

• Let's focus on BFQ performance in the demo: https://youtu.be/V6pXtwvfh4U

Personal systems

Newfound speed and control with BFQ

- That's all about servers
- Let's move to personal systems

Personal systems

- Servers evidently need proper configuration
- But, on a personal system,
 - do we have to create groups and configure weights
 - to enjoy the above I/O-control benefits?
- Not with BFQ
 - BFQ tries to provide the best possible quality of experience
 - With no configuration needed

BFQ main features

- High application and system responsiveness
 - Low lag in typical Android terminology
- Low drop rate in audio/video playback
- High throughput

Both

- the high need for these features, and
- the actual performance of BFQ

are shown in many diagrams, presentations and, especially, demos

Driving at full speed 0000	Server systems	Personal systems
	Demos	

- PC (Linux distribution) demo with an HDD: https://youtu.be/ZeNbSOrzpoY
- PC (Linux distribution) demo with an SSD: https://youtu.be/1cjZeaCXIyM
- Embedded system (Hikey running Android) demo: https://youtu.be/ANfqNiJVoVE
- Embedded system (Hikey running Debian) demo: https://youtu.be/gyM_JJtIvP0
- Android Phone (Pixel 2) demo: https://youtu.be/Ai3EPDpdsvY

Responsiveness (lag) and playback quality

- Let's see BFQ at work with the SSD demo
 - Same storage device as in the demo on I/O control
 - Old Linux and BFQ version, still in legacy blk
 - Relative performance of BFQ now much better
 - Shown in a diagram in next slide
 - The goal of the demo is to give you a feeling of what the numbers in the next slide mean
- So, let's watch the PC (Linux distribution) demo with an SSD: https://youtu.be/1cjZeaCXIyM

Personal systems

Comparison on Linux 4.18 with *blk-mq*

Driving at full speed 0000

Server systems

Personal systems

That's all folks!

Thanks for your attention!