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Portable Services?

System services + some container features

or

Containers + with some system service features
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Containers?

Resource Bundles + Isolation + Delivery
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Consider Range: Integrated → Isolated:

Classic System Services → Portable System Services → Docker-style micro services →
Full OS containers á la LXC → VMs á la KVM

Consider what’s shared, not shared: Networking, File System, PID Namespace, Init
System, Device Access, Logging
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Goal: Leave No Artifacts!

(Bind lifecycles!)

Goal: Everything in one place!

Goal: “Feel” like a native service — because it is one! (Specifically “systemctl” should
work for it, like for any native service)
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Why?

Next step for service management

Everything already has a systemd service file

Admins are used to services already, let’s just make them more powerful

“Superprivileged Containers”

Integration is good, not bad (frequently at least)
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Three supported service formats: SysV, Native, Portable

(The building blocks + generators permit more)
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Disk Images

Let’s avoid defining something new (instead: simple directory tree/subvolume, or GPT
containing squashfs)

Services run directly from it (think: RootImage=, similar to RootDirectory=)

Let’s fix chroot()!

(RootImage= with Crypto and Verity!)

Image just needs to carry systemd unit files, and /usr/lib/os-release, then it
qualifies as portable service image
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Sandboxing: PrivateDevices=, PrivateNetwork=, DynamicUser=, RemoveIPC=,
PrivateTmp=, PrivateUsers=, ProtectSystem=, ProtectHome=,

SystemCallFilter=, SystemCallArchitectures= RestrictAddressFamilies=,
RuntimeDirectory=, StateDirectory=, CacheDirectory=, LogsDirectory=,
ConfigurationDirectory=, RestrictRealtime=, ProtectKernelModules=,
ProtectKernelTunables=, ProtectControlGroups=, RestrictNamespaces=,

PrivateMounts=, MemoryDenyWriteExecute=, LockPersonality=,
CapabilityBoundingSet=, NoNewPrivileges=, . . .

More to come: ProtectKernelLogs=, ProtectClock=, ProtectTracing=,
ProtectKeyRing=, . . .

Per-Service Firewalling and Accounting

For portable services (unlike for native and SysV): Sandboxing is opt-out, not opt-in!
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Hard problems:

Dynamic Users

User Database mismatch

D-Bus, . . .
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In scope: Simple delivery, Verification, Simple building, Versioning, Socket activation,
. . .

Out of Scope: Load distribution/migration á la fleetd, Cluster deployment, claim we’d
define a universal API, server side functionality, desktop stuff
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Mode of operation:

portablectl attach foobar.raw

portablectl detach foobar.raw
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No new metadata!

Socket, Target, Path, Timer units, too!

Unit files matched by image name prefix: foobar-4711.raw means
foobar*.service|socket|path|timertimer

Triple use images

Portable Services are Ready to Use



No new metadata!

Socket, Target, Path, Timer units, too!

Unit files matched by image name prefix: foobar-4711.raw means
foobar*.service|socket|path|timertimer

Triple use images

Portable Services are Ready to Use



No new metadata!

Socket, Target, Path, Timer units, too!

Unit files matched by image name prefix: foobar-4711.raw means
foobar*.service|socket|path|timertimer

Triple use images

Portable Services are Ready to Use



No new metadata!

Socket, Target, Path, Timer units, too!

Unit files matched by image name prefix: foobar-4711.raw means
foobar*.service|socket|path|timertimer

Triple use images

Portable Services are Ready to Use



Profiles:

default, strict, trusted, nonetwork
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Build tool: mkosi, . . .
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http://0pointer.net/blog/walkthrough-for-portable-services.html
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That’s all, folks!
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