
Portable Services are Ready to Use
LinuxPiter 2018, St. Petersburg, Russia

November 2018

Portable Services are Ready to Use

Portable Services?

System services + some container features

or

Containers + with some system service features

Portable Services are Ready to Use

Portable Services?

System services + some container features

or

Containers + with some system service features

Portable Services are Ready to Use

Portable Services?

System services + some container features

or

Containers + with some system service features

Portable Services are Ready to Use

Portable Services?

System services + some container features

or

Containers + with some system service features

Portable Services are Ready to Use

Containers?

Resource Bundles + Isolation + Delivery

Portable Services are Ready to Use

Containers?

Resource Bundles + Isolation + Delivery

Portable Services are Ready to Use

Portable Services:

Resource Bundles + Integration + Sandboxing

Modular

Portable Services are Ready to Use

Portable Services:

Resource Bundles + Integration + Sandboxing

Modular

Portable Services are Ready to Use

Portable Services:

Resource Bundles + Integration + Sandboxing

Modular

Portable Services are Ready to Use

Consider Range: Integrated → Isolated:

Classic System Services → Portable System Services → Docker-style micro services →
Full OS containers á la LXC → VMs á la KVM

Consider what’s shared, not shared: Networking, File System, PID Namespace, Init
System, Device Access, Logging

Portable Services are Ready to Use

Consider Range: Integrated → Isolated:

Classic System Services → Portable System Services → Docker-style micro services →
Full OS containers á la LXC → VMs á la KVM

Consider what’s shared, not shared: Networking, File System, PID Namespace, Init
System, Device Access, Logging

Portable Services are Ready to Use

Consider Range: Integrated → Isolated:

Classic System Services → Portable System Services → Docker-style micro services →
Full OS containers á la LXC → VMs á la KVM

Consider what’s shared, not shared: Networking, File System, PID Namespace, Init
System, Device Access, Logging

Portable Services are Ready to Use

Goal: Leave No Artifacts!

(Bind lifecycles!)

Goal: Everything in one place!

Goal: “Feel” like a native service — because it is one! (Specifically “systemctl” should
work for it, like for any native service)

Portable Services are Ready to Use

Goal: Leave No Artifacts! (Bind lifecycles!)

Goal: Everything in one place!

Goal: “Feel” like a native service — because it is one! (Specifically “systemctl” should
work for it, like for any native service)

Portable Services are Ready to Use

Goal: Leave No Artifacts! (Bind lifecycles!)

Goal: Everything in one place!

Goal: “Feel” like a native service — because it is one! (Specifically “systemctl” should
work for it, like for any native service)

Portable Services are Ready to Use

Goal: Leave No Artifacts! (Bind lifecycles!)

Goal: Everything in one place!

Goal: “Feel” like a native service — because it is one! (Specifically “systemctl” should
work for it, like for any native service)

Portable Services are Ready to Use

Why?

Next step for service management

Everything already has a systemd service file

Admins are used to services already, let’s just make them more powerful

“Superprivileged Containers”

Integration is good, not bad (frequently at least)

Portable Services are Ready to Use

Why?

Next step for service management

Everything already has a systemd service file

Admins are used to services already, let’s just make them more powerful

“Superprivileged Containers”

Integration is good, not bad (frequently at least)

Portable Services are Ready to Use

Why?

Next step for service management

Everything already has a systemd service file

Admins are used to services already, let’s just make them more powerful

“Superprivileged Containers”

Integration is good, not bad (frequently at least)

Portable Services are Ready to Use

Why?

Next step for service management

Everything already has a systemd service file

Admins are used to services already, let’s just make them more powerful

“Superprivileged Containers”

Integration is good, not bad (frequently at least)

Portable Services are Ready to Use

Why?

Next step for service management

Everything already has a systemd service file

Admins are used to services already, let’s just make them more powerful

“Superprivileged Containers”

Integration is good, not bad (frequently at least)

Portable Services are Ready to Use

Why?

Next step for service management

Everything already has a systemd service file

Admins are used to services already, let’s just make them more powerful

“Superprivileged Containers”

Integration is good, not bad (frequently at least)

Portable Services are Ready to Use

Three supported service formats: SysV, Native, Portable

(The building blocks + generators permit more)

Portable Services are Ready to Use

Three supported service formats: SysV, Native, Portable

(The building blocks + generators permit more)

Portable Services are Ready to Use

Disk Images

Let’s avoid defining something new (instead: simple directory tree/subvolume, or GPT
containing squashfs)

Services run directly from it (think: RootImage=, similar to RootDirectory=)

Let’s fix chroot()!

(RootImage= with Crypto and Verity!)

Image just needs to carry systemd unit files, and /usr/lib/os-release, then it
qualifies as portable service image

Portable Services are Ready to Use

Disk Images

Let’s avoid defining something new

(instead: simple directory tree/subvolume, or GPT
containing squashfs)

Services run directly from it (think: RootImage=, similar to RootDirectory=)

Let’s fix chroot()!

(RootImage= with Crypto and Verity!)

Image just needs to carry systemd unit files, and /usr/lib/os-release, then it
qualifies as portable service image

Portable Services are Ready to Use

Disk Images

Let’s avoid defining something new (instead: simple directory tree/subvolume, or GPT
containing squashfs)

Services run directly from it (think: RootImage=, similar to RootDirectory=)

Let’s fix chroot()!

(RootImage= with Crypto and Verity!)

Image just needs to carry systemd unit files, and /usr/lib/os-release, then it
qualifies as portable service image

Portable Services are Ready to Use

Disk Images

Let’s avoid defining something new (instead: simple directory tree/subvolume, or GPT
containing squashfs)

Services run directly from it (think: RootImage=, similar to RootDirectory=)

Let’s fix chroot()!

(RootImage= with Crypto and Verity!)

Image just needs to carry systemd unit files, and /usr/lib/os-release, then it
qualifies as portable service image

Portable Services are Ready to Use

Disk Images

Let’s avoid defining something new (instead: simple directory tree/subvolume, or GPT
containing squashfs)

Services run directly from it (think: RootImage=, similar to RootDirectory=)

Let’s fix chroot()!

(RootImage= with Crypto and Verity!)

Image just needs to carry systemd unit files, and /usr/lib/os-release, then it
qualifies as portable service image

Portable Services are Ready to Use

Disk Images

Let’s avoid defining something new (instead: simple directory tree/subvolume, or GPT
containing squashfs)

Services run directly from it (think: RootImage=, similar to RootDirectory=)

Let’s fix chroot()!

(RootImage= with Crypto and Verity!)

Image just needs to carry systemd unit files, and /usr/lib/os-release, then it
qualifies as portable service image

Portable Services are Ready to Use

Disk Images

Let’s avoid defining something new (instead: simple directory tree/subvolume, or GPT
containing squashfs)

Services run directly from it (think: RootImage=, similar to RootDirectory=)

Let’s fix chroot()!

(RootImage= with Crypto and Verity!)

Image just needs to carry systemd unit files, and /usr/lib/os-release, then it
qualifies as portable service image

Portable Services are Ready to Use

Sandboxing: PrivateDevices=, PrivateNetwork=, DynamicUser=, RemoveIPC=,
PrivateTmp=, PrivateUsers=, ProtectSystem=, ProtectHome=,

SystemCallFilter=, SystemCallArchitectures= RestrictAddressFamilies=,
RuntimeDirectory=, StateDirectory=, CacheDirectory=, LogsDirectory=,
ConfigurationDirectory=, RestrictRealtime=, ProtectKernelModules=,
ProtectKernelTunables=, ProtectControlGroups=, RestrictNamespaces=,

PrivateMounts=, MemoryDenyWriteExecute=, LockPersonality=,
CapabilityBoundingSet=, NoNewPrivileges=, . . .

More to come: ProtectKernelLogs=, ProtectClock=, ProtectTracing=,
ProtectKeyRing=, . . .

Per-Service Firewalling and Accounting

For portable services (unlike for native and SysV): Sandboxing is opt-out, not opt-in!

Portable Services are Ready to Use

Sandboxing: PrivateDevices=, PrivateNetwork=, DynamicUser=, RemoveIPC=,
PrivateTmp=, PrivateUsers=, ProtectSystem=, ProtectHome=,

SystemCallFilter=, SystemCallArchitectures= RestrictAddressFamilies=,
RuntimeDirectory=, StateDirectory=, CacheDirectory=, LogsDirectory=,
ConfigurationDirectory=, RestrictRealtime=, ProtectKernelModules=,
ProtectKernelTunables=, ProtectControlGroups=, RestrictNamespaces=,

PrivateMounts=, MemoryDenyWriteExecute=, LockPersonality=,
CapabilityBoundingSet=, NoNewPrivileges=, . . .

More to come: ProtectKernelLogs=, ProtectClock=, ProtectTracing=,
ProtectKeyRing=, . . .

Per-Service Firewalling and Accounting

For portable services (unlike for native and SysV): Sandboxing is opt-out, not opt-in!

Portable Services are Ready to Use

Sandboxing: PrivateDevices=, PrivateNetwork=, DynamicUser=, RemoveIPC=,
PrivateTmp=, PrivateUsers=, ProtectSystem=, ProtectHome=,

SystemCallFilter=, SystemCallArchitectures= RestrictAddressFamilies=,
RuntimeDirectory=, StateDirectory=, CacheDirectory=, LogsDirectory=,
ConfigurationDirectory=, RestrictRealtime=, ProtectKernelModules=,
ProtectKernelTunables=, ProtectControlGroups=, RestrictNamespaces=,

PrivateMounts=, MemoryDenyWriteExecute=, LockPersonality=,
CapabilityBoundingSet=, NoNewPrivileges=, . . .

More to come: ProtectKernelLogs=, ProtectClock=, ProtectTracing=,
ProtectKeyRing=, . . .

Per-Service Firewalling and Accounting

For portable services (unlike for native and SysV): Sandboxing is opt-out, not opt-in!

Portable Services are Ready to Use

Sandboxing: PrivateDevices=, PrivateNetwork=, DynamicUser=, RemoveIPC=,
PrivateTmp=, PrivateUsers=, ProtectSystem=, ProtectHome=,

SystemCallFilter=, SystemCallArchitectures= RestrictAddressFamilies=,
RuntimeDirectory=, StateDirectory=, CacheDirectory=, LogsDirectory=,
ConfigurationDirectory=, RestrictRealtime=, ProtectKernelModules=,
ProtectKernelTunables=, ProtectControlGroups=, RestrictNamespaces=,

PrivateMounts=, MemoryDenyWriteExecute=, LockPersonality=,
CapabilityBoundingSet=, NoNewPrivileges=, . . .

More to come: ProtectKernelLogs=, ProtectClock=, ProtectTracing=,
ProtectKeyRing=, . . .

Per-Service Firewalling and Accounting

For portable services (unlike for native and SysV): Sandboxing is opt-out, not opt-in!

Portable Services are Ready to Use

Hard problems:

Dynamic Users

User Database mismatch

D-Bus, . . .

Portable Services are Ready to Use

Hard problems:

Dynamic Users

User Database mismatch

D-Bus, . . .

Portable Services are Ready to Use

Hard problems:

Dynamic Users

User Database mismatch

D-Bus, . . .

Portable Services are Ready to Use

Hard problems:

Dynamic Users

User Database mismatch

D-Bus, . . .

Portable Services are Ready to Use

In scope: Simple delivery, Verification, Simple building, Versioning, Socket activation,
. . .

Out of Scope: Load distribution/migration á la fleetd, Cluster deployment, claim we’d
define a universal API, server side functionality, desktop stuff

Portable Services are Ready to Use

In scope: Simple delivery, Verification, Simple building, Versioning, Socket activation,
. . .

Out of Scope: Load distribution/migration á la fleetd, Cluster deployment, claim we’d
define a universal API, server side functionality, desktop stuff

Portable Services are Ready to Use

Mode of operation:

portablectl attach foobar.raw

portablectl detach foobar.raw

Portable Services are Ready to Use

Mode of operation:

portablectl attach foobar.raw

portablectl detach foobar.raw

Portable Services are Ready to Use

Mode of operation:

portablectl attach foobar.raw

portablectl detach foobar.raw

Portable Services are Ready to Use

No new metadata!

Socket, Target, Path, Timer units, too!

Unit files matched by image name prefix: foobar-4711.raw means
foobar*.service|socket|path|timertimer

Triple use images

Portable Services are Ready to Use

No new metadata!

Socket, Target, Path, Timer units, too!

Unit files matched by image name prefix: foobar-4711.raw means
foobar*.service|socket|path|timertimer

Triple use images

Portable Services are Ready to Use

No new metadata!

Socket, Target, Path, Timer units, too!

Unit files matched by image name prefix: foobar-4711.raw means
foobar*.service|socket|path|timertimer

Triple use images

Portable Services are Ready to Use

No new metadata!

Socket, Target, Path, Timer units, too!

Unit files matched by image name prefix: foobar-4711.raw means
foobar*.service|socket|path|timertimer

Triple use images

Portable Services are Ready to Use

Profiles:

default, strict, trusted, nonetwork

Portable Services are Ready to Use

Profiles:

default, strict, trusted, nonetwork

Portable Services are Ready to Use

Build tool: mkosi, . . .

Portable Services are Ready to Use

http://0pointer.net/blog/walkthrough-for-portable-services.html

Portable Services are Ready to Use

That’s all, folks!

Portable Services are Ready to Use

