
The Zephyr Project
Johan Hedberg

Intel Open Source Technology Center

What is Zephyr?

Zephyr is a small, scalable, open-source, real-time operating system (RTOS) for
use on resource-constrained systems supporting multiple architectures.

Project goal: To become the “Linux” of microcontrollers

Small footprint

• Zephyr Kernel can be
configured to run in as little
as 8k RAM

• Enables application code to
scale

• Configurable and Modular

Cross Platform

• Native support for multiple
architectures:

• x86, ARM*, ARC,
NIOS-II, Tensilica,
RISC-V

Open Source

• Zephyr is licensed under
Apache 2 License

• Managed by the Linux
Foundation*

• Transparent development

Project Members

Platinum

Members

Silver

Members And others…

Supported Architectures

Supported Boards

Arduino 101

FRDM K64F

Quark D2000

Galileo

Arduino Due

Minnowboard

STM Mini A15

Nucleo 103RB

STM32 Olimexino

Synopsys EMSK

Altera MAX10

NRF52

NRF51

Seeed Carbon

Seeed Nitrogen

Nucleo 401RE

Nucleo64 L476RG

Hexiwear

TI Launchpad Wifi

ARM V2M Beetle

Nucleo F411RE

ARM V2M MPS2

FRDM-KW41Z

BBC Microbit Redbear BLE Nano

Zedboard Pulpino

Nucleo F334R8

STM3210c

STM32373c

NRF52 pca10040

Atmel SAM E70

tinyTILE

Platform

Radios

Power Management

Kernel Services / Schedulers

Sensors Crypto HW

I2
C

S
P

I

U
A

R
T

G
P

IO …

F
il

e
 S

y
st

e
m

L
o

g
g

in
g

/
D

e
b

u
g

D
a

ta
b

a
se

/
P

ro
p

e
rt

ie
s

C
ry

p
to

IP
C

Flash

S
e

n
so

rs

...

Low Level API

D
e

v
ic

e

M
a

n
a

g
e

m
e

n
t

15.4

IPv6/IPv4

TCP/UDP

BLE Wi-Fi NFC ...

6LoWPAN

RPL

T
h

re
a

d

TLSDTLS

CoAPHTTPMQTTLWM2M…

Application

• Highly Configurable, Highly
Modular

• Cooperative and Pre-emptive
Threading

• Memory and Resources are
typically statically allocated

• Bluetooth® Low Energy (5.0)
with both controller and host,
Bluetooth Mesh

• Native and optimized IP stack

Architecture
Smart Objects / High Level APIs / Data Models

k
e

rn
e

l
O

S
 S

e
rv

ic
e

s
A

p
p

li
ca

ti
o

n
 S

e
rv

ic
e

s

Zephyr OS

•The kernel and HAL

•OS Services such as IPC, Logging, file
systems, crypto

Zephyr Project

•SDK, tools and development
environment

•Additional middleware and features

•Device Management and

•Bootloader

Zephyr Community

•3rd Party modules and libraries

•Support for Zephyr in 3rd party
projects, for example: Zephyr.js,
Micropython, Iotivity

Zephyr Ecosystem
Zephyr “Community”

Zephyr Project

Zephyr OS

Kernel / HAL

OS Services

Application Services

Kernel / HAL

• Scheduler

• Kernel objects and services

• Low-level architecture and board support

• Power management hooks and low level
interfaces to hardware

OS Services and Low level APIs

• Platform specific drivers

• Generic implementation of I/O APIs

• File systems, Logging, Debugging and IPC

• Cryptography Services

• Networking and Connectivity

• Device Management

Application Services

• High Level APIs

• Access to standardized data models

• High Level networking protocols

Developing with Zephyr

• Code on github, contributions through pull requests

• Linux, Mac & Windows SDKs supported

• Lots of sample applications in the source tree

• Qemu support in Linux

• Flashing boards usually just “make flash”

• KConfig – based build configuration
(e.g. “make menuconfig”)

• Linux coding style

• Device-tree used for board
definitions

• Integrated qemu support

• No special HW needed to get started

Familiar to Linux developers

• Expand use cases and application areas

• Industrial, safety and security features

• Deep Embedded usages

• Advanced Configurations and use cases:
SMP, AMP, ..

• Eco System

• Improve support on Mac* and Windows*

• IDE integration

• 3rd Party Tools: Tracing, Profiling,
Debugging…

• LLVM, Commercial compilers, ..

• Introduce and support Zephyr as an E2E
platform:

• Bootloader

• Device Firmware Updates

• Cloud Connectivity

• Development Tools

• Safety and Security

• Development model and process with security
and safety in mind

• Secure and harden the Kernel

• MISRA-C 2012 Compliance

• Standard APIs and Portability: POSIX Layer
(PSE54), BSD Socket,

Zephyr Project Roadmap and Vision

Tentative Roadmap

Zephyr 1.9 Zephyr 1.10 Zephyr 1.11 Backlog

● POSIX API Layer (Pthread)
● BSD Socket Support
● Expand Device Tree support to

more architectures
● Bluetooth Mesh
● Bluetooth 5.0 Support
● LWM2M
● MMU/MPU (Cont.): Thread

Isolation, Paging (→)
● Revamp Testsuite, Increase

Coverage

● FOTA Updates (LWM2M, BLE
(→))

● Integration with MCUBOOT
Bootloader

● MMU/MPU (Cont.)
● Build and Configuration System

(CMake)
● LLVM Support
● NFFS File system support
● Thread Protocol
● Revamp Testsuite, Increase

Coverage (Cont.)

● SMP Support (←)
● POSIX API Layer (PSE54)
● Eco-System:

○ Tracing,
○ Profiling
○ debugging support

through 3rd party
tools

● Source Code modularisation:
Support external modules,
boards, SoCs

● Support the kernel (scheduler
+ objects) as a separate module

● IDE Integration(←)

• CanBUS, SocketCAN
• AMP
• Native Port
• MISRA-C 2012: Kernel
• Enhanced Sensor support (support

HW FIFOs)

2017 2018
Sep Oct Nov Dec Jan Feb Mar Apr May June Jul Aug

♦
1.9

♦
1.10

♦
1.11

(←) potentially pull in
(→) potentially push out

♦
1.12 (LTS
Candidate)

Slightly deeper look into Zephyr’s
Connectivity subsystems

• Zephyr-optimized native stack

• IPv4 & IPv6 (also simultaneously)

• UDP &TCP (also simultaneously)

• RPL & 6LoWPAN

• Protocols:

• HTTP/WebSocket, CoAP, MQTT, DNS,
mDNS, DHCPv4, LWM2M, SNTP

• DTLS, TLS

• 802.15.4 Restricted Functionality
Device support

• Drivers for

• CC2520 (802.15.4)

• ENC28J60 (802.3)

• NXP FRDM K-64F (802.3)

• NXP MCR20A (802.15.4)

• NXP KW41Z (802.15.4)

• BLE/6LoWPAN (IPSP node)

• WPAN-USB/WPAN-Serial (Zephyr as
a 15.4 adapter/serial radio for Linux)

Networking Overview

Bluetooth Overview

• Bluetooth 5.0 Controller & Host

• Bluetooth Mesh

• Memory optimizations (threads & buffers) to easily fit 16k targets

• Multiple HCI drivers: UART, SPI, USB

• Basic Bluetooth Classic (BR/EDR) support

• IPSP/6LoWPAN working together with the native IP stack

• Planned features

• Vendor HCI extensions (Mesh, custom address handling, etc)

• Bluetooth 5.0 Advertising Extensions

Three more (short) talks on Zephyr on Saturday

• Implementing Bluetooth Mesh with Zephyr

• Zephyr Networking overview

• Building Zephyr Bluetooth Controller

Resources

Web: www.zephyrproject.org

Twitter: @ZephyrIoT

IRC: #zephyrproject @ freenode.net

Email: zephyr-devel@lists.zephyrproject.org

Code: github.com/zephyrproject-rtos

Questions?

