
#LinuxPiter

Reproducibility:

from arithmetic operations

to building system packages

#LinuxPiter

Saint Petersburg

3-4 November 2017

Nikolay Vizovitin

#LinuxPiter

The Problem

2

free software

SOURCE BINARY

freedom to study freedom to run

can be verified can be used

build

#LinuxPiter

Reproducible & Repeatable

REPRODUCIBLE

• “Anyone can repeat it”

• Given the same:

1. Input data

2. Relevant attributes of

environment

• Produces bit-by-bit

identical outputs

REPEATABLE

• “It produces same results”

• Given the same:

1. Input data

2. Runtime

• Produces bit-by-bit

identical outputs

3

#LinuxPiter

At CIA conference in 2012…

4

https://theintercept.com/document/2015/03/10/strawhorse-attacking-macos-ios-software-development-kit/

#LinuxPiter

Awesome Projects

5

#LinuxPiter

ARITHMETIC OPERATIONS

When “math” is non-reproducible

6

#LinuxPiter

Arithmetic Operations Reproducibility

1. Produce consistent results

1. From one run to the next

2. From one set of build options to another

3. From one compiler (or runtime) to another

4. From one platform to another

2. While maintaining accuracy and performance

3. These objectives often conflict

7

#LinuxPiter

The illusion

It’s convenient to think that:

1. for integer operations:

1. -a/b == -(a/b)

2. for floating-point operations:

1. (a+b)+c == a+(b+c)

2. a+b == b+a

3. a*b == b*a

4. and even a+b == a+b

8

#LinuxPiter

Integer Division

$ cat div.c

#include <stdio.h>

int main()

{

 int result = -6 / 4;

 printf("%d\n", result);

 return 0;

}

$ gcc div.c –o div && ./div

-1

$ cat div.py

#!/usr/bin/env python3

result = -6 // 4

print(result)

$./div.py

-2

9

#LinuxPiter

Floating-Point: Associativity

$ cat assoc.c

#include <stdio.h>

int main() {

 const double x = 0.1;

 const double y = 0.2;

 const double z = 0.3;

 if ((x + y) + z != x + (y + z))

 printf("non-associative\n");

 return 0;

}

$ gcc -O2 assoc.c && ./a.out

non-associative

10

#LinuxPiter

Floating-Point: Associativity

1. “Catastrophic cancellation”:

(1.0 + 1e100) + -1e100 == 0.0

1.0 + (1e100 + -1e100) == 1.0

2. Sum and multiplication are not associative

3. May happen “behind the scenes”

E.g. due to automatic parallelization or SSE

11

#LinuxPiter

Floating-Point: Commutativity

1. Addition and multiplication, as defined by

IEEE-754, is guaranteed to be commutative:

Each of the operations shall be performed as if it first

produced an intermediate result correct to infinite

precision and with unbounded range, and then coerced

this intermediate result to fit in the destination's format.

2. So a+b == b+a and a*b == b*a ?

12

#LinuxPiter

Floating-Point: a + b == a + b

$ cat double.c

#include <stdio.h>

double add1(double x) {

 return x + 1.0;

}

int main() {

 const double x = 0.012;

 const double y = x + 1.0;

 if (y != add1(x))

 printf("ERROR\n");

 return 0;

}

$ uname -m

i686

$ gcc double.c && ./a.out

ERROR

$ gcc -ffloat-store double.c && ./a.out

$

13

1. a + b != a + b

2. Reproduces with -O0 and -O1

3. Due to excess precision in FPU

4. GCC Bugzilla “not a bug” #323

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=323

#LinuxPiter

Math Library Functions

1. Different implementations may not have the

same accuracy

2. No official standard dictates accuracy or how

results should be rounded

(except for some functions)

3. For many functions there’s no correct rounding

algorithm with bounded run time

14

#LinuxPiter

Relevancy

1. Client-server architectures

2. Game development (multiplayer, replay)

3. Tools

15

#LinuxPiter

Arithmetic Operations Reproducibility

1. Recommendations:

1. Extensively test everything you rely on

2. Control tradeoffs between reproducibility, accuracy, and performance with

compiler options

3. Consider using fixed point arithmetic and/or specialized math libraries

2. On floating-point determinism:

1. goo.gl/HaFKzX (what every computer scientist should know about

floating-point arithmetic)

2. goo.gl/tTyV2x (deterministic lockstep methods viability for game

networking)

16

https://goo.gl/HaFKzX
https://goo.gl/HaFKzX
https://goo.gl/tTyV2x

#LinuxPiter

ALGORITHMS

How to build tools with reproducible output

17

#LinuxPiter

Program Output Reproducibility

Practical recommendations:

1. Avoid using global state

2. Avoid using true randomness

3. Prefer pure functions

4. Use deterministic algorithms

5. Test reproducibility!

18

#LinuxPiter

REPRODUCIBLE BUILDS

Provide a verifiable path from source to binary

19

#LinuxPiter

Build Reproducibility

A build is reproducible if given the same

source code, relevant attributes of build

environment, and build instructions, any

party can recreate bit-by-bit identical copies of

all specified artifacts.

20

#LinuxPiter

Reproducible Builds

Reproducible builds are a set of software

development practices that create a verifiable

path from human readable source code

to the binary code used by computers.

This supports software freedom to study how

the program works, and change it to your needs.

21

#LinuxPiter

Benefits

1. Resisting attacks

2. Smaller binary differences

3. Quality assurance

4. Increased development speed

5. Build documentation

6. Easier license compliance (GPL)

22

#LinuxPiter

General Approach

1. Use a deterministic build system

2. Define a build environment

3. Distribute the build environment

4. Provide a comparison protocol

23

#LinuxPiter

DETERMINISTIC

BUILD SYSTEMS

How to achieve repeatable builds

24

#LinuxPiter

Sources of Non-determinism

1. Unstable ordering of inputs and outputs

2. Capturing volatile global state

3. True randomness

25

#LinuxPiter

Deterministic Build Systems

1. Build environment definition governs what should be

deterministic

2. In general:

1. Ensure inputs are stable

2. Ensure outputs are stable

3. Capture as little as possible from the environment

4. Avoid true randomness

26

#LinuxPiter

Stable Order for Inputs

non-reproducible *

$ cat Makefile

SRCS = $(wildcard *.c)

tool: $(SRCS:.c=.o)

 $(CC) -o $@ $^

reproducible

$ cat Makefile

SRCS = util.c worker.c main.c

tool: $(SRCS:.c=.o)

 $(CC) -o $@ $^

27

* with GNU Make >= 3.82

$ cat Makefile

SRCS = $(sort $(wildcard *.c))

tool: $(SRCS:.c=.o)

 $(CC) -o $@ $^

#LinuxPiter

Stable Order for Inputs (Locale)

non-reproducible

$ tar -cf archive.tar src

reproducible

$ find src -print0 |

 LC_ALL=C sort -z |

 tar --no-recursion --null \

 -T - -cf archive.tar

28

$ find src -print0 |

 sort -z |

 tar --no-recursion --null \

 -T - -cf archive.tar

$ tar -cf archive.tar \

 src/util.c \

 src/worker.c \

 src/main.c

#LinuxPiter

Stable Order for Outputs

non-reproducible

$ cat deps.py

...

for module in deps.keys():

 version = deps[module]

 print(‘%s (>= %s)’

 % (module, version))

reproducible

$ cat deps.py

...

for module in sorted(deps.keys()):

 version = deps[module]

 print(‘%s (>= %s)’

 % (module, version))

29

#LinuxPiter

Stable Order for Outputs

1. Tune hashing for dictionaries:

1. PERL_HASH_SEED

2. PYTHONHASHSEED

3. Why hashing is randomized?

1. goo.gl/62RYhF (oCERT-2011-003)

2. goo.gl/7VLG7h (Algorithmic Complexity Attacks)

2. Account for locale settings (sorting)

30

https://goo.gl/62RYhF
https://goo.gl/7VLG7h

#LinuxPiter

Volatile Global State

1. Limit access to global state

(e.g. sandbox build process)

2. Reset global state for build

(e.g. environment variables)

3. Include required global state as explicit

inputs, version it as source code

31

#LinuxPiter

Volatile Inputs

1. Any volatile input (e.g. from network) can

disappear or change

(e.g. NPM left-pad package: goo.gl/ayZwep)

2. Do not rely on remote data

3. Otherwise:

1. Ensure integrity (checksums)

2. Keep backups

32

https://goo.gl/ayZwep
https://goo.gl/ayZwep

#LinuxPiter

Version Information

1. Make version information deterministic

2. Current date and incremental build IDs aren’t useful

3. Build ID could be a hash of the source code

4. Version information could be extracted from sources:

1. Explicitly recorded

2. VCS revision

3. Changelog entry

4. Hash of the source code

33

#LinuxPiter

Timestamps

1. Best to avoid

2. Base on changelog / last VCS commit

3. Enforce:

1. Run build under faketime (has drawbacks)

2. Implement SOURCE_DATE_EPOCH environment variable

(spec: goo.gl/NNvvju, support: goo.gl/JwpHZz)

3. Post-process (remove or normalize timestamps)

34

https://goo.gl/NNvvju
https://goo.gl/NNvvju
https://goo.gl/JwpHZz
https://goo.gl/JwpHZz

#LinuxPiter

Locales

1. If possible, better to explicitly set LC_ALL

2. LC_CTIME affects time format

3. LC_COLLATE affects sorting order

4. LC_CTYPE affects input and output of

many tools

35

#LinuxPiter

Locales

$ echo a B b c | xargs -n1 |
 LC_ALL=C sort

B

a

b

c

$ echo a B b c | xargs -n1 |
 LC_ALL=en_US.UTF-8 sort

a

b

B

c

36

#LinuxPiter

Archive Metadata

1. Most formats capture build environment details

(mtime, file ordering, users, groups, uids, gids,

permissions)

2. Use specific options to make output stable

3. Or post-process with tools like:

1. strip-nondeterminism

2. re-dzip.sh

37

#LinuxPiter

Build Paths

1. Some tools record sources paths

2. Most compilers include it into debug info,

and therefore BuildID as well

(preserved by strip)

3. Use tool options (e.g. gzip -n)

4. Or post-process output

38

#LinuxPiter

Randomness

1. Use a predetermined

value to seed a PRNG

2. Use tool options and

environment variables

to set the seed

39

xkcd.com/221

$ gcc -flto -frandom-seed=worker.c -c worker.c

$ nm -a worker.o | grep inline

0000000000000000 n .gnu.lto_.inline.7bc2ea8a

#LinuxPiter

Randomness

Sources of randomness:

1. Temporary file names

2. Generated UUIDs

3. Filesystem

4. Protection against complexity attacks

5. LTO (symbol names)

6. Unique stamps in coverage data files

7. …

40

#LinuxPiter

Value Initialization

41

1. Make sure all values are initialized

(don’t capture random memory blocks)

2. Use tools like Valgrind

#LinuxPiter

Stable Dependencies

1. All dependencies should be locked to specific

version

1. Via language package manager

2. Or via “vendoring” (by checking in dependencies)

2. Test your package manager reproducibility!

(e.g. PHP composer randomizes autoloader)

42

#LinuxPiter

BUILD TOOLS

Reproducibility support in build tools

43

#LinuxPiter

Build Tools

1. Some build tools will help you achieve

reproducibility. Use them!

2. Or apply the previous guidelines to your

favorite build system. Yes, it’s possible to

have reproducible build with GNU Make.

44

#LinuxPiter

Tup

Tup “the updater”
http://gittup.org/tup/

1. Limits and monitors file dependencies via

FUSE

2. Resets and controls use of environment

variables

45

http://gittup.org/tup/
http://gittup.org/tup/
http://gittup.org/tup/

#LinuxPiter

Bazel

Bazel “{Fast, Correct} – Chose two” (Google)
https://bazel.build/

1. Executes most build actions in a sandbox

2. Prevents use of __TIME__, __DATE__, etc.

3. Rewrites source paths in built objects

4. Normalizes outputs

5. Controls environment variables

6. Prevents use of global dependencies during compilation

7. Heavily focused on Google’s way of doing things

46

https://bazel.build/
https://bazel.build/
https://bazel.build/

#LinuxPiter

Buck

Buck “A high-performance build tool” (Facebook)
https://buckbuild.com/

1. Similar to Bazel

2. More flexible

3. Normalizes outputs

4. Allows control of environment variables

47

https://buckbuild.com/
https://buckbuild.com/

#LinuxPiter

Pants

Pants “A fast, scalable build system” (Twitter)
https://www.pantsbuild.org/

1. Similar to Bazel

2. Written in Python (and a bit of Rust) rather
than Java (Bazel, Buck)

3. Mostly useful for Java, Scala, Python, JS

4. Normalizes outputs

5. Controls environment variables

48

https://www.pantsbuild.org/
https://www.pantsbuild.org/

#LinuxPiter

Please

Please “cross-language build system with an
emphasis on high performance, extensibility and
reproduceability” (ThoughtMachine)
https://please.build/

1. Similar to Bazel and Buck

2. Written in Go rather than Java

3. Mostly useful for C++, Go, Java, Python

4. Normalizes outputs

5. Optional sandbox for build rules and tests

49

https://please.build/
https://please.build/

#LinuxPiter

 Meson

Meson “extremely fast and user friendly”
http://mesonbuild.com/

1. Frontend to Ninja, Visual Studio or Xcode

2. No wildcard support for sources

3. Reproducibility issues are routinely fixed

4. Used by systemd

5. A number of library definitions is provided
by authors (https://github.com/mesonbuild)

50

http://mesonbuild.com/
http://mesonbuild.com/
https://github.com/mesonbuild
https://github.com/mesonbuild

#LinuxPiter

How to Choose a Build Tool?

1. Autotools background? → check out Meson

2. Use plain Makefiles? → try Tup

3. See what Bazel has to offer

4. Bazel is too restrictive? → try Buck

5. Not a fan of Java in a build tool? → try

Pants or Please

51

#LinuxPiter

BUILD ENVIRONMENTS

How to define and distribute a build environment

52

#LinuxPiter

Parts of a Build Environment

1. Build tools and versions

2. Build system architecture

3. Operating system

4. Build path

5. User name

6. Locale & timezone

7. …

53

#LinuxPiter

Defining a Build Environment

1. Build from source

2. Use reference distribution

3. Define as a VM / container

54

#LinuxPiter

Distribution by Building from Source

1. Use external resources (Coreboot)

– Use guidelines for remote files

2. Check in everything (*BSD, Bazel)

3. Ship the toolchain as a build product

(OpenWRT)

55

#LinuxPiter

Reference Distribution

1. Use a stable distribution

(Debian, CentOS, etc.)

2. Record package versions

3. Hope the old versions stay available or

mirror them

4. Used by Bitcoin, Tor Browser

56

#LinuxPiter

Distribution by VMs / Containers

1. Gitian

2. Docker

3. Vagrant

57

#LinuxPiter

Gitian

1. Used by Bitcoin, Tor Browser

2. Runs builds using LXC or KVM

3. “Descriptors” that describe the build using:

1. Base distribution

2. Packages

3. GIT remotes

4. Other input files

5. Build script

4. https://gitian.org

58

https://gitian.org/
https://gitian.org/

#LinuxPiter

Docker

1. Provides a way to describe Linux

application container images

2. Build in a controlled environment

3. Bazel has support for building Docker

images reproducibly

4. https://www.docker.com

59

https://www.docker.com/
https://www.docker.com/

#LinuxPiter

Vagrant

1. Spins up and drives VirtualBox VM using

Ruby and other scripts

2. Build in a controlled environment

3. Can be used under Windows and macOS

4. https://www.vagrantup.com

60

https://www.vagrantup.com/
https://www.vagrantup.com/

#LinuxPiter

VERIFYING REPRODUCIBILITY

How to compare build results and test for reproducibility

61

#LinuxPiter

Comparison Protocol

1. Use direct comparison or cryptographic

checksums

2. Ignore / strip embedded signatures

62

#LinuxPiter

Testing for Variations

1. Build the same source two times with

changes to the environment

2. Compare results using the comparison

protocol

3. Example variations: goo.gl/jgvisg

63

https://goo.gl/jgvisg
https://goo.gl/jgvisg

#LinuxPiter

TOOLS

Tools to make builds reproducible

64

#LinuxPiter

strip-nondeterminism

1. Normalizes archive file formats

(gzip, zip, jar, ar, etc.)

2. Extensible

65

#LinuxPiter

disorderfs

1. Overlay FUSE filesystem that introduces

non-determinism into FS metadata

(e.g. randomizes traversal order)

2. Reveals problems with unstable order of

inputs

66

#LinuxPiter

diffoscope

1. “Deep recursive diff”

2. Recursively unpacks file formats and

compares their contents

3. https://try.diffoscope.org

4. Presents comprehensive report

67

https://try.diffoscope.org/
https://try.diffoscope.org/
https://try.diffoscope.org/

#LinuxPiter

diffoscope

68

#LinuxPiter

diffoscope

69

#LinuxPiter

faketime

1. LD_PRELOAD of libfaketime

2. Makes a subject believe current time is the

specified one or starts at the specified point

3. May cause issues with certain build tools

that use timestamps for decision making

(such as Make)

70

#LinuxPiter

ducible

1. For Windows binaries

2. Post-processes PEs and PDBs to make

their builds reproducible

71

#LinuxPiter

PACKAGING

How to make system package builds reproducible

72

#LinuxPiter

Reproducible Package Builds

1. Two parts:

1. Build package contents reproducibly

2. Package it reproducibly

2. deb: pbuilder, cowbuilder, sbuild

– It’s possible to post-process .deb as an archive

3. rpm: mock

73

#LinuxPiter

FINAL THOUGHTS

Where to go from here?

74

#LinuxPiter

Reproducible vs. Repeatable

REPRODUCIBLE

• “Anyone can repeat it”

• Given the same:

1. Input data

2. Relevant attributes of

environment

• Produces bit-by-bit

identical outputs

REPEATABLE

• “It produces same results”

• Given the same:

1. Input data

2. Runtime

• Produces bit-by-bit

identical outputs

75

#LinuxPiter

Do You Need Reproducibility?

1. If working on closed source – probably not,

repeatability & reliability should suffice

2. It takes considerable effort to implement

3. Requires continuous testing

4. Requires “rebuilders”

76

#LinuxPiter

Benefits of Repeatable Builds

1. Smaller binary differences

2. Quality assurance

3. Increased development speed

4. Build documentation

5. Easier license compliance (GPL)

77

#LinuxPiter

What We Do at Plesk

1. We build an advanced hosting platform

2. (Mostly) closed source

3. A lot of configurations

4. A lot of languages and technologies in use

5. Switch from make-like system to Buck

6. Focus on repeatability rather than

reproducibility

78

#LinuxPiter

Where to Go from Here?

1. Try building your project twice in different
environment (or even the same one!) and
compare results with diffoscope

2. https://reproducible-builds.org
Spearheaded by Debian community, includes
numerous other projects

3. Provides continuous testing facilities at
https://tests.reproducible-builds.org

4. If you have an Open Source project, write a
helper script and submit it to be tested as well!

79

https://reproducible-builds.org/
https://reproducible-builds.org/
https://reproducible-builds.org/
https://reproducible-builds.org/
https://reproducible-builds.org/
https://tests.reproducible-builds.org/
https://tests.reproducible-builds.org/
https://tests.reproducible-builds.org/
https://tests.reproducible-builds.org/

#LinuxPiter

THANK YOU

Questions?

80

