

Kernel HTTPS/TCP/IP stack
for HTTP DDoS mitigation

Alexander Krizhanovsky

Tempesta Technologies, Inc.

ak@tempesta-tech.com

Who am I?

CEO & CTO at Tempesta Technologies (Seattle, WA)

Developing Tempesta FW – open source Linux
Application Delivery Controller (ADC)

Custom software development in:
● high performance network traffic processing

e.g. WAF mentioned in Gartner magic quadrant
● Databases

e.g. MariaDB SQL System Versioning
https://github.com/tempesta-tech/mariadb
https://m17.mariadb.com/session/technical-preview-temporal-
querying-asof

HTTPS challenges

HTTP(S) is a core protocol for the Internet
(IoT, SaaS, Social networks etc.)

HTTP(S) DDoS is tricky
● Asymmetric DDoS (compression, TLS handshake etc.)
● A lot of IP addresses with low traffic
● Machine learning is used for clustering
● How to filter out all HTTP requests with
“Host: www.example.com:80”?

● "Lessons From Defending The Indefensible":
https://www.youtube.com/watch?v=pCVTEx1ouyk

http://www.example.com/
https://www.youtube.com/watch?v=pCVTEx1ouyk

TCP stream filter

IPtables strings, BPF, XDP, NIC filters
● HTTP headers can cross packet bounds
● Scan large URI or Cookie for Host value?

Web accelerator
● aren’t designed (suitable) for HTTP filtering

IPS vs HTTP DDoS

e.g. Suricata, has powerful rules syntax at L3-L7

Not a TCP end point => evasions are possible

SSL/TLS

SSL terminator is required => many data copies & context switches

or double SSL processing (at IDS & at Web server)

Double HTTP parsing

Doesn’t improve Web server peroformance (mitigation != prevention)

Interbreed an HTTP accelerator and a firewall

TCP & TLS end point

Very fast HTTP parser to process HTTP floods

Network I/O optimized for massive ingress traffic

Advanced filtering abilities at all network layers

Very fast Web cache to mitigate DDoS which we can’t filter out
● ML takes some time for bots clusterization
● False negatives are unavoidable

Application Delivery Controller (ADC)

WAF accelerator

Just like Web accelerator

Advanced load balancing:
● Server groups by any HTTP field
● Rendezvous hashing
● Ratio
● Adaptive & predictive

Some DDoS attacks can be just
normally serviced

Application layer DDoS
Service from Cache Rate limit

Nginx 22us 23us

(Additional logic in limiting module)

Fail2Ban: write to the log, parse the log, write to the log, parse the
log…

Application layer DDoS
Service from Cache Rate limit

Nginx 22us 23us

(Additional logic in limiting module)

Fail2Ban: write to the log, parse the log, write to the log, parse the
log… - really in 21th century?!

tight integration of Web accelerator and a firewall is needed

Web-accelerator capabilities

Nginx, Varnish, Apache Traffic Server, Squid, Apache HTTPD etc.
● cache static Web-content
● load balancing
● rewrite URLs, ACL, Geo, filtering etc.

Web-accelerator capabilities

Nginx, Varnish, Apache Traffic Server, Squid, Apache HTTPD etc.
● cache static Web-content
● load balancing
● rewrite URLs, ACL, Geo, filtering? etc.

Web-accelerator capabilities

Nginx, Varnish, Apache Traffic Server, Squid, Apache HTTPD etc.
● cache static Web-content
● load balancing
● rewrite URLs, ACL, Geo, filtering? etc.
● C10K

Web-accelerator capabilities

Nginx, Varnish, Apache Traffic Server, Squid, Apache HTTPD etc.
● cache static Web-content
● load balancing
● rewrite URLs, ACL, Geo, filtering? etc.
● C10K – is it a problem for bot-net? SSL? CORNER

● what about tons of 'GET / HTTP/1.0\n\n'? CASES!

Web-accelerator capabilities

Nginx, Varnish, Apache Traffic Server, Squid, Apache HTTPD etc.
● cache static Web-content
● load balancing
● rewrite URLs, ACL, Geo, filtering? etc.
● C10K – is it a problem for bot-net? SSL? CORNER

● what about tons of 'GET / HTTP/1.0\n\n'? CASES!

Kernel-mode Web-accelerators: TUX, kHTTPd
● basically the same sockets and threads
● zero-copy → sendfile(), lazy TLB

Web-accelerator capabilities

Nginx, Varnish, Apache Traffic Server, Squid, Apache HTTPD etc.
● cache static Web-content
● load balancing
● rewrite URLs, ACL, Geo, filtering? etc.
● C10K – is it a problem for bot-net? SSL? CORNER

● what about tons of 'GET / HTTP/1.0\n\n'? CASES!

Kernel-mode Web-accelerators: TUX, kHTTPd
● basically the same sockets and threads
● zero-copy → sendfile(), lazy TLB => not needed

Web-accelerator capabilities

Nginx, Varnish, Apache Traffic Server, Squid, Apache HTTPD etc.
● cache static Web-content
● load balancing
● rewrite URLs, ACL, Geo, filtering? etc.
● C10K – is it a problem for bot-net? SSL? CORNER

● what about tons of 'GET / HTTP/1.0\n\n'? CASES!

Kernel-mode Web-accelerators: TUX, kHTTPd NEED AGAIN
● basically the same sockets and threads TO MITIGATE
● zero-copy → sendfile(), lazy TLB => not needed HTTPS DDOS

Web-accelerators are slow: SSL/TLS copying

User-kernel space copying
● Copy network data to user space
● Encrypt/decrypt it

● Copy the date to kernel for transmission (or splice())

Kernel-mode TLS
● Facebook & RedHat: https://lwn.net/Articles/666509/
● Mellanox: https://netdevconf.org/1.2/session.html?boris-pismenny
● Netflix: https://people.freebsd.org/~rrs/asiabsd_2015_tls.pdf

https://lwn.net/Articles/666509/
https://netdevconf.org/1.2/session.html?boris-pismenny
https://people.freebsd.org/~rrs/asiabsd_2015_tls.pdf

Linux kernel TLS (since 4.13)

CONFIG_TLS (switched off by default)

Symmetric encryption only (no handshake)

Example (https://github.com/Mellanox/tls-af_ktls_tool):

struct tls12_crypto_info_aes_gcm_128 ci = {
 .version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_AES_GCM_128 };
connect(sd, ..., ...);
gnutls_handshake(*session);
gnutls_record_get_state(session, ..., ..., iv, key, seq);
memcpy(ci.iv, seq, TLS_CIPHER_AES_GCM_128_IV_SIZE);
memcpy(ci.rec_seq, seq, TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
memcpy(ci.key, key, TLS_CIPHER_AES_GCM_128_KEY_SIZE);
memcpy(ci.salt, iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
setsockopt(sd, SOL_TCP, TCP_ULP, "tls", sizeof("tls"));
setsockopt(sd, SOL_TLS, TLS_TX, &ci, sizeof(ci));

https://github.com/Mellanox/tls-af_ktls_tool

Linux kernel TLS & DDoS

Most Facebook users have established sessions

TLS handshake is still an issue
● TLS 1.3 has 1-RTT handshake and is almost here
● TLS 1.2 must live for a long time (is Windows XP still alive?)
● TLS renegotiation

Web-accelerators are slow: profile

 % symbol name

 1.5719 ngx_http_parse_header_line

 1.0303 ngx_vslprintf

 0.6401 memcpy

 0.5807 recv

 0.5156 ngx_linux_sendfile_chain

 0.4990 ngx_http_limit_req_handler

=> flat profile

Web-accelerators are slow: syscalls

epoll_wait(.., {{EPOLLIN,}},...)

recvfrom(3, "GET / HTTP/1.1\r\nHost:...", ...)

write(1, “...limiting requests, excess...", ...)

writev(3, "HTTP/1.1 503 Service...", ...)

sendfile(3,..., 383)

recvfrom(3, ...) = -1 EAGAIN

epoll_wait(.., {{EPOLLIN,}}, ...)

recvfrom(3, "", 1024, 0, NULL, NULL) = 0

close(3)

Web-accelerators are slow: HTTP parser

Start: state = 1, *str_ptr = 'b'

 while (++str_ptr) {
 switch (state) { <= check state
 case 1:
 switch (*str_ptr) {
 case 'a':
 ...
 state = 1
 case 'b':
 ...
 state = 2
 }
 case 2:
 ...
 }
 ...
 }

Web-accelerators are slow: HTTP parser

Start: state = 1, *str_ptr = 'b'

 while (++str_ptr) {
 switch (state) {
 case 1:
 switch (*str_ptr) {
 case 'a':
 ...
 state = 1
 case 'b':
 ...
 state = 2 <= set state
 }
 case 2:
 ...
 }
 ...
 }

Web-accelerators are slow: HTTP parser

Start: state = 1, *str_ptr = 'b'

 while (++str_ptr) {
 switch (state) {
 case 1:
 switch (*str_ptr) {
 case 'a':
 ...
 state = 1
 case 'b':
 ...
 state = 2
 }
 case 2:
 ...
 }
 ... <= jump to while
 }

Web-accelerators are slow: HTTP parser

Start: state = 1, *str_ptr = 'b'

 while (++str_ptr) {
 switch (state) { <= check state
 case 1:
 switch (*str_ptr) {
 case 'a':
 ...
 state = 1
 case 'b':
 ...
 state = 2
 }
 case 2:
 ...
 }
 ...
 }

Web-accelerators are slow: HTTP parser

Start: state = 1, *str_ptr = 'b'

 while (++str_ptr) {
 switch (state) {
 case 1:
 switch (*str_ptr) {
 case 'a':
 ...
 state = 1
 case 'b':
 ...
 state = 2
 }
 case 2:
 ... <= do something
 }
 ...
 }

Web-accelerators are slow: HTTP parser

Web-accelerators are slow: strings

We have AVX2, but GLIBC doesn’t still use it

HTTP strings are special:

● No ‘\0’-termination (if you’re zero-copy)
● Special delimiters (‘:’ or CRLF)
● strcasecmp(): no need case conversion for one string
● strspn(): limited number of accepted alphabets

switch()-driven FSM is even worse

Fast HTTP parser

http://natsys-lab.blogspot.ru/2014/11/the-fast-finite-state-machine-for-
http.html
● 1.6-1.8 times faster than Nginx’s

HTTP optimized AVX2 strings processing:
http://natsys-lab.blogspot.ru/2016/10/http-strings-processing-using-c-
sse42.html
● ~1KB strings:
● strncasecmp() ~x3 faster than GLIBC’s
● URI matching ~x6 faster than GLIBC’s strspn()
● kernel_fpu_begin()/kernel_fpu_end() for whole softirq shot

http://natsys-lab.blogspot.ru/2014/11/
http://natsys-lab.blogspot.ru/2016/10/

HTTP strong validation

TODO: https://github.com/tempesta-tech/tempesta/issues/628

Injections: specify allowed URI characters for a Web app

Resistant to large HTTP fields

Web-accelerators are slow: async I/O

Web-accelerators are slow: async I/O

Web-accelerators are slow: async I/O

Web-accelerators are slow: async I/O

Web cache also
resides In CPU
caches and evicts
requests

HTTPS/TCP/IP stack

Alternative to user space TCP/IP stacks

HTTPS is built into TCP/IP stack

Kernel TLS (fork from mbedTLS) – no copying
(1 human month to port TLS to kernel!)

HTTP firewall plus to IPtables and Socket filter

Very fast HTTP parser and strings processing using AVX2

Cache-conscious in-memory Web-cache for DDoS mitigation

TODO

HTTP QoS for asymmetric DDoS mitigation

DSL for multi-layer filter rules

Tempesta FW

TODO: HTTP QoS
for asymmetric DDoS mitigation

https://github.com/tempesta-tech/tempesta/issues/488

“Web2K: Bringing QoS to Web Servers” by Preeti Bhoj et al.

Local stress: packet drops, queues overrun, response latency etc
(kernel: cheap statistics for asymmetric DDoS)

Upsream stress: req_num / resp_num, response time etc.

Static QoS rules per vhost: HTTP RPS, integration w/ Qdisc - TBD

Actions: reduce TCP window, don’t accept new connections,
close existing connections

https://github.com/tempesta-tech/tempesta/issues/488

User space HTTP proxying

1. Receive request at CPU1

2. Copy request to user space

3. Update headers

4. Copy request to kernel space

5. Send the request from CPU2

3 data copies

Access TCP control blocks and
data buffers from different CPUs

Synchronous sockets: HTTPS/TCP/IP stack

Socket callbacks call TLS and
HTTP processing

Everything is processing in
softirq (while the data is hot)

No receive & accept queues

No file descriptors

Less locking

Synchronous sockets: HTTPS/TCP/IP stack

Socket callbacks call TLS and
HTTP processing

Everything is processing in
softirq (while the data is hot)

No receive & accept queues

No file descriptors

Less locking

Lock-free inter-CPU transport

=> faster socket reading

=> lower latency

skb page allocator:
zero-copy HTTP messages adjustment

Add/remove/update HTTP
headers w/o copies

skb and its head are
allocated in the same
page fragment or
a compound page

skb page allocator:
zero-copy HTTP messages adjustment

Add/remove/update HTTP
headers w/o copies

skb and its head are allocated
in the same page fragment or a
compound page

HTTP/2

Pros
● Responses are sent in parallel and in

any order (no head-of-line blocking)
● Compression

Cons
● Zero copy techniques aren’t applicable

=> For client connections (slow network), not for LAN (fast network)

QUIC?

UDP-based with flow control

10% duplicates

0-RTT handshakes

Implemented as a user-space library

Questions:
● Opaque UDP traffic just like UDP flood
● TCP fast open + TLS 1.3 seem solve handshake problem

Frang: HTTP DoS

Rate limits
● request_rate, request_burst
● connection_rate, connection_burst
● concurrent_connections
● TODO: tls handshakes

Slow HTTP
● client_header_timeout, client_body_timeout
● http_header_cnt
● http_header_chunk_cnt, http_body_chunk_cnt

Frang: WAF

Length limits: http_uri_len, http_field_len, http_body_len

Content validation: http_host_required, http_ct_required,
http_ct_vals, http_methods

HTTP Response Splitting: count and match requests and responses

Injections: carefully verify allowed character sets

...and many upcoming filters:
https://github.com/tempesta-tech/tempesta/labels/security

Not a featureful WAF

https://github.com/tempesta-tech/tempesta/labels/security

Sticky cookie

User/session identification
● Cookie challenge for dummy DDoS bots
● Persistent/sessions scheduling (no rescheduling on a server failure)

Enforce: HTTP 302 redirect

 sticky name=__tfw_user_id__ enforce;

Sticky cookie

User/session identification
● Cookie challenge for dummy DDoS bots
● Persistent/sessions scheduling (no rescheduling on a server failure)

Enforce: HTTP 302 redirect

 sticky name=__tfw_user_id__ enforce;

TODO: JavaScript challenge
https://github.com/tempesta-tech/tempesta/issues/536

TODO: Tempesta language

https://github.com/tempesta-tech/tempesta/issues/102

 if ((req.user_agent =~ /firefox/i

 || req.cookie !~ /^our_tracking_cookie/)

 && (req.x_forwarded_for != "1.1.1.1"

 || client.addr == 1.1.1.1))

 # Block the client at IP layer, so it will be filtered

 # efficiently w/o further HTTP processing.

 tdb.insert("ip_filter", client.addr, evict=10000);

Nftables integration via mark
https://github.com/tempesta-tech/tempesta/issues/760

Performance

https://github.com/tempesta-tech/tempesta/wiki/HTTP-cache-performance

Performance analysis

~x3 faster than Nginx (~600K HTTP RPS) for normal Web cache
operations

Must be much faster to block HTTP DDoS
(DDoS emulation is an issue)

Similar to DPDK/user-space TCP/IP stacks
http://www.seastar-project.org/
http-performance/

...bypassing Linux TCP/IP
isn’t the only way to get a fast Web server

...lives in Linux infrastructure:
LVS, tc, IPtables, eBPF, tcpdump etc.

http://www.seastar-project.org/

Keep the kernel small

Just 30K LoC (compare w/ 120K LoC of BtrFS)

Only generic and crucial HTTPS logic is in kernel

Supplementary logic is considered for user space
● HTTP compression & decompression

https://github.com/tempesta-tech/tempesta/issues/636
● Advanced DDoS mitigation & WAF (e.g. full POST processing)
● ...other HTTP users (Web frameworks?)

Zero-copy kernel-user space transport for minimizing kernel code

https://github.com/tempesta-tech/tempesta/issues/636

TODO:
Zero-copy kernel-user space transport

HTTPS DDoS mitigation & WAF
● Machine learning

clusterization in user space
● Automatic L3-L7 filtering

rules generation

Thanks!

Web-site: http://tempesta-tech.com

Availability: https://github.com/tempesta-tech/tempesta

Blog: http://natsys-lab.blogspot.com

E-mail: ak@tempesta-tech.com

We are hiring!

mailto:ak@tempesta-tech.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

