
Linux tuning to improve PostgreSQL
performance

Ilya Kosmodemiansky
ik@postgresql-consulting.com

The modern linux kernel

• About 1000 sysctl parameters (plus non-sysctl settings, such
as mount options)

• It is not possible to benefit from the modern kernel’s
advantages without wise tuning

Tuning targets in Linux

• CPU
• Memory
• Storage
• Other

PostgreSQL specifics

• Hungry for resources (like any other database)
• Tuning single target can have a very small effect
• We need to maximize throughput

Throughput approach

Disks

*

*

shared_buffers

Kernel buffer

PostgreSQL worker processes

WAL

How to make pages travel faster from disk to memory and back?

• More effective work with memory
• More effective flushing pages to disk
• A proper hardware, of course

More effective work with memory

• NUMA
• Huge pages
• Swap

NUMA

Symptoms that something goes wrong
• Some CPU cores are overloaded without any obvious reason

NUMA

What goes on
• Non Uniform Memory Access
• CPUs have their own memory, CPU + memory nodes
connected via NUMA interconnect

• CPU uses its own memory, then accesses remaining memory by
interconnect (numactl – – hardware shows distances)

• If node interleaving disabled, CPU tries to use its local memory
(for page cache for example;-))

NUMA

Which NUMA configuration is better for PostgreSQL
• Switch NUMA off at low level

I Enable memory interleaving in BIOS
I numa → off at kernel boot

• Another approach
I vm.zone_reclaim_mode = 0
I numactl −−interleave = all /etc/init.d/postgresql start
I kernel.numa_balancing = 0

Blog post from Robert Haas:
http://rhaas.blogspot.co.at/2014/06/linux-disables-
vmzonereclaimmode-by.html

Huge pages

Symptoms that something goes wrong
• You have a lot of RAM and you shared_buffers settings is
32Gb/64Gb or more

• That means that you definitely have an overhead if not using
huge pages

Huge pages

What goes on
• By default OS allocates memory by 4kB chunk
• OS translates physical addresses into virtual addresses and
cache the result in Translation Lookaside Buffer (TLB)

• 1Gb
4kB = 262144 - huge TLB overhead and cache misses

• Better to allocate memory in larger chunks

Huge pages

How can PostgreSQL benefit from huge pages?
• Enable pages in kernel
• vm.nr_hugepages = 3170 via sysctl
• Before 9.2 - libhugetlbfs library
• 9.3 - no way
• 9.4+ huge_pages = try |on|off (postgresql.conf)
• Works on Linux
• Disable Transparent huge pages - PostgreSQL can not benefit
from them

Swap

Symptoms that something goes wrong
• There are enough memory, but swap is used

Swap

What goes on
• It happens when there are a lot of RAM on server

Swap

What is better for PostgreSQL?
• vm.swappiness = 1 or 0
• OOM-killer
• 0 is not a good idea for modern kernels

More effective flushing pages to disk

Symptoms that something goes wrong
• Checkpoint spikes

More effective flushing pages to disk

More effective flushing pages to disk

What goes on
• By default vm.dirty_ratio = 20, vm.dirty_background_ratio
= 10

• Nothing happens until kernel buffer is 10% full of dirty pages
• From 10% to 20% - background flushing
• From 20% IO effectively stops until pdflush/flushd/kdflush
finishes its job

• This is almost crazy if your shared_buffers setting is
32Gb/64Gb or more with any cache on RAID-controller or SSD

More effective flushing pages to disk

What is better for PostgreSQL?
• vm.dirty_background_bytes = 67108864, vm.dirty_bytes =
536870912 (for RAID with 512MB cache on board) looks more
reasonable

• Hardware settings and checkpoint settings in postgresql.conf
must be appropriate

• See my talk about PostgreSQL disc performance for details
(https://www.youtube.com/watch?v=Lbx-JVcGIFo)

What else

• Scheduler tuning
• Power saving

Scheduler tuning

• sysctl kernel.sched_migration_cost_ns supposed to be
reasonably high

• sysctl kernel.sched_autogroup_enabled = 0
• A good explanation http://www.postgresql.org/message-
id/50E4AAB1.9040902@optionshouse.com

• You need a relatively new kernel

Example

$ pgbench -S -c 8 -T 30 -U postgres pgbench transaction type: SELECT only
scaling factor: 30 duration: 30 s
number of clients: 8 number of threads: 1
sched_migration_cost_ns = 50000, sched_autogroup_enabled = 1
- tps: 22621, 22692, 22502
sched_migration_cost_ns = 500000, sched_autogroup_enabled = 0
- tps: 23689, 23930, 23657

tests by Alexey Lesovsky

Power saving policy

• acpi_cpufreq and intel_pstate drivers
• scaling_governor: performance, ondemand, conservative,
powersave, userspace

• acpi_cpufreq + performance can be dramatically faster than
acpi_cpufreq + ondemand

• intel_pstate + powersave

Thanks

to my collegues Alexey Lesovsky and Max Boguk for a lot of
research on this topic

Questions?

ik@postgresql-consulting.com

