
Сетевой	стек	Solarflare	
OpenOnload.	В	чем	и	почему	он	

обыгрывает	ядро	Linux		

Константин	Ушаков	
OKTET	Labs.	

	



Content	
•  Kernel	bypass	networking	
•  Onload	architecture	and	moYvaYon	behind	it	
•  Safety	and	security	
•  ImplementaYon	challenges	
•  What’s	faster:	examples	



Kernel	bypass	networking	
•  Geang	applicaYon	closer	to	the	network	

Slide 4

HPC/R&D => Bleeding edge network architectures

! Great performance because network access is made in the context of the 
application process

– Reduces overheads, but requires user-safe hardware and special libraries

Network Adaptor

Kernel
Context

Network Driver

Protocol

Application
Context

DMA

Application Application

Network Adaptor

Kernel
Context

Network Driver

Protocol 

Application
Context

Application Application

DMA
DMA

Application
Context

Application

Protocol

Driver



Approaches:	APIs	
•  Socket	API	(socket(),	send(),	poll(),	epoll_wait()	etc.)	

–  OpenOnload	
•  Special	APIs	

–  Solarflare	 EF_VI	
–  DPDK	
–  netmap	
–  Infiniband	verbs	
–  etc.	



Architecture	[1/5]	
•  VI	(Virtual	Interface	;	v-nic):	minimum	set	of	resources	

required	to	send/receive	traffic	
–  TX	
–  RX	
–  noYficaYon	queue	(EVQ)	

•  Filtering	

K
e
r
n
e
l	 VI	

N
IC	Context	

VI	



Architecture	[2/5]	

K
e
r
n
e
l	 VI	 VI	

eth0	 eth1	

•  TradiYonal	interfaces	



Architecture	[2/5]	

K
e
r
n
e
l	

VI	 VI	

eth0	 eth1	

Protocol	

ApplicaYon	

ApplicaYon	



Architecture	[3/5]	

K
e
r
n
e
l	 VI	 VI	 VI	 VI	

shared	state	

kernel	state	

ApplicaYon	

shared	state	

ApplicaYon	

shared	state	

ApplicaYon	

shared	state	

N
IC	Context	

VI	

eth0	 eth1	



Architecture	[4/5]	

K
e
r
n
e
l	 VI	 VI	 VI	 VI	 VI	 VI	

ApplicaYon	

shared	state	

ApplicaYon	

EF_VI	
Interface	

ApplicaYon	

shared	state	

N
IC	Context	

VI	

eth0	 eth1	 shared	state	

kernel	state	



Architecture	[5/5]	

`	

K
e
r
n
e
l	 VI	 VI	 VI	 VI	 VI	 VI	

ApplicaYon	

shared	state	

ApplicaYon	

shared	state	

ApplicaYon	

shared	state	

N
IC	Context	

VI	

shared	state	

kernel	state	



Architecture	[5/5]	

K
e
r
n
e
l	 VI	 VI	 VI	 VI	 VI	 VI	

ApplicaYon	ApplicaYon	

	
	

ApplicaYon	
N
IC	Context	

VI	

Socket	

Protocol	

shared	state	

kernel	state	

	
	 Socket	

Protocol	

	
	 Socket	

Protocol	



Architecture	[5/5]	

K
e
r
n
e
l	

VI	 VI	 VI	 VI	 VI	 VI	

ApplicaYon	ApplicaYon	

	
	

ApplicaYon	
N
IC	Context	

VI	

Socket	

Protocol	

shared	state	

kernel	state	

	
	 Socket	

Protocol	

	
	 Socket	

Protocol	

Protocol	

ApplicaYon	

ApplicaYon	



API	
•  socket(),	listen(),	connect(),	accept(),	recv(),	send(),	read(),	

write(),	select(),	poll(),	epoll_wait(),	fcntl(),	dup(),	accept4(),	
ioctl(),	setsockopt()	etc.	–	full	Socket	API	
–  you	don’t	know	how	many	funcYons	people	use	and	in	which	ways…	

•  Access	point	of	the	API	is	socket	file	descriptor	
•  LD_PRELOAD	loads	the	library	(libonload.so)	
•  libonload.so	provides	Linux	compaYble	Socket	API	



libc	 libc	 libc	

API:	LD_PRELOAD	

K
e
r
n
e
l	

VI	 VI	 VI	 VI	 VI	 VI	

JVM	

libonload.so	

ApplicaYon	

libonload.so	

	
shared	state	

Bash	J	

libonload.so	

N
IC	Context	

VI	

shared	state	

kernel	state	

	
shared	state	

	
shared	state	

Protocol	

ApplicaYon	

ApplicaYon	



API:	recv()/poll()	
1)  if	receive	queue	not	empty	->	return	data;	
2)  if	noYficaYon	queue	not	empty	->	handle	the	event	->	return	

data;	
3)  <here	we	have	neither	data	nor	event>	
4)  spin?	

–  spin	(for	some	Yme)	in	userland	waiYng	for	an	event	

5)  go	to	the	kernel	ß	slow	
6)  wait	for	interrupt	and	“wake	up	the	socket”	
7)  wake	up	in	userland	->	return	data	
à:	copy	to	user	buffer;	Zero	Copy	API	get	rids	of	it		



API:	TCP	send()	
•  copy	user	data	->	packet	buffer	
•  packet	buffer	is	added	into	socket	sendq	

–  sendq	is	in	shared	state	
•  send	window	&	congesYon	window	OK	

–  can	send	=>	send	into	the	VI	(NIC)	
•  otherwise	send	provoked	by	event	handler	(in	userland	OR	

kernel)	



Why	do	we	need	Shared	State	
•  fork()	:	duplicates	everything,	need	to	be	in	sync	
•  exec()	:	just	wipes	everything	out	
•  Process	can	send	fd/socket	via	UNIX	domain	socket	
•  Process	exits	(perhaps	in	fire):	data	should	be	delivered	+	

socket	should	be	shut	down	



Shared	state:	fork()	

Kernel	

ApplicaYon	

Onload	

FD	
Shared	state	

Shared	state	

Kernel	state	



Shared	state:	fork()	

Kernel	

ApplicaYon	

Onload	

FD	
Shared	state	

Shared	state	

Kernel	state	

ApplicaYon	

Onload	

FD	
Shared	state	



Shared	state:	exec()	

Kernel	

ApplicaYon	

Onload	

FD	
Shared	state	

Shared	state	

Kernel	state	



Shared	state:	exec()	–	wipes	it	all	

Kernel	

Shared	state	

Kernel	state	



Shared	state:	exec()	

Kernel	

ApplicaYon	

Onload	

FD	

Shared	state	

Kernel	state	

Socket	(FD)	survives	
exec()	if	no	CLOEXEC	
	
stat()	knows	this	



Shared	state:	exec()	

Kernel	

ApplicaYon	

Onload	

FD	
Shared	state	

Shared	state	

Kernel	state	



Shared	state:	internals	
•  What	is	in	it:	

–  sockets,	
–  packet	buffers,	
–  VI	state,	
–  Ymers	(retransmit,	keepalive	etc.),	
–  free	resources,	
–  configuraYon,	
–  demux	table	(selects	socket).	



Shared	state:	Addressing	
•  Mapped	into	mulYple	processes	+	kernel	

–  pointers	are	indirect	and	kernel-managed,	
–  sockets	and	packet	buffers	are	idenYfied	by	index,	
–  other	fields	idenYfied	by	offset.	

•  User-space	code	can	corrupt	the	state	
–  state	sharing	=	trust	

•  Kernel	code	should	check	state	is	not	corrupted	by	user-space	
code	



Security:	Kernel	state	
•  Kernel	state	=	Trusted	state	
•  Pointers	=	offsets	

–  kernel:	verified	and	converted	
–  userland:	not	verified	and	converted	

•  Lists:	you	can	loop	them	even	with	valid	pointers	
–  traverse	stack	with	a	counter	



More	security!	
•  Packet	buffers:	place	where	HW	

writes	packets	and	from	which	
we	copy	data	to	the	recv()	etc.	
buffers	

•  NIC	maps	BufID	->	Physical	Addr	
•  You	can’t	read/write/spoil	buffer	

that	is	not	yours	

VI	 VI	 VI	 VI	 VI	 VI	

ApplicaYon	

VI	

shared	state	

kernel	state	

	
	 Socket	

Protocol	
BufID	
table	



Stack:	basics	
•  Stack:	enYty	that	allows	socket	

communicaYon	to	the	NIC	
–  applicaYon	only	entrance	point	is		

socket	=	socket()	

•  LifeYme:	independent	of	the	applicaYon	
•  Tightly	connected	to	the	shared	state	

VI	 VI	 VI	 VI	 VI	 VI	

ApplicaYon	

VI	

shared	state	

kernel	state	

	
	 Socket	

Protocol	



Stack:	<->	processes	

Process	

Stack	

Stack	

Stack	

Stack	

Process	

Process	

•  Arbitrary	mapping	
•  Can	change	over	Yme	



Stack:	default	stack	for	the	process	
•  Default	stack	is	where	socket()	creates	a	socket	
•  Default	can	be	changed	
•  Default	depends	on	how	we	got	here	

–  fork,	exec,	seangs	etc.	

•  If	there	is	actually	no	stack	->	socket()	creates	a	stack	
–  slow	and	logic	avoids	this	

•  close():	
–  destroys	stack	if	it’s	the	last	socket	
–  does	not	destroy	default	process	stack	



Default	stack:	socket()	

Kernel	

ApplicaYon#1	

Onload	

FD	
Shared	state	

Shared	state	

Kernel	state	



Default	stack:	fork()	

Kernel	

ApplicaYon#1	

Onload	

FD	
Shared	state	

Shared	state	

Kernel	state	

ApplicaYon#2	

Onload	

FD	
Shared	state	



Default	stack:	socket()	in		
ApplicaYon#2:	default	behaviour	

Kernel	

ApplicaYon#1	

Onload	

FD	
Shared	state	

Shared	state	

Kernel	state	

ApplicaYon#2	

Onload	

FD	
Shared	
state	

FD	
Shared	
state	

Shared	state	

Kernel	state	



Stack	for	a	socket	
•  EF_NAME:	just	tell	the	stack	name	to	your	process	
•  Granular	policies:	

–  different	users	->	different	processes	
–  different	groups	->	different	processes	
–  etc.	

•  Move	socket	between	stacks:	in	some	cases	



Stack:	locks	
•  Smart	mix	of:	

–  stack	lock	
–  socket	lock	
–  atomics	

•  Atomics	are	expensive	
•  Receive	path:	HW	should	be	able	to	queue	packets	while	

socket	reads	them	
•  Transmit	path:	sendq	+	pre-queue	mechanism	that	allows	

socket	to	queue	packets	without	taking	the	stack	lock	



Onload	FD:	onloadfs	
•  Socket	is	an	FD	
•  Onload	socket	is	also	an	FD	
•  /proc/pid/fd/239	:	special	onloadfs	

–  similar	to	socke�s	

•  It’s	an	FD,	so	even	without	Onload:	
–  read()	
–  write()	
–  poll(),	epoll_wait(),	select()	



Onload	FD:	OS	socket	
•  OS	Socket:	reserve	ports	
•  No	OS	FD:	don’t	waste	2	FDs	

per	socket	

Kernel	

ApplicaYon#1	

Onload	
Onload	
FD	

Shared	state	

Shared	state	

Kernel	state	

OS	Socket	

OS	FD	



Onload	FD:	OS	socket	
•  OS	Socket:	reserve	ports	
•  No	OS	FD:	don’t	waste	2	FDs	

per	socket	

Kernel	

ApplicaYon#1	

Onload	
Onload	
FD	

Shared	state	

Shared	state	

Kernel	state	

OS	Socket	

OS	FD	



Libc	

close():	what	if	OS	closes	the	socket	

•  close()	called	via	libc	is	a	
problem	

•  FD	table	in	userland	à	
unnoYced	close	will	spoil	
the	table		

Kernel	

ApplicaYon#1	

Onload	
Onload	
FD	

Shared	state	

Shared	state	

Kernel	state	

close(Onload	FD)	

Trampoline	



Libc	

close():	return	properly!	

•  close()	called	via	libc	is	a	
problem	

•  FD	table	in	userland	à	
unnoYced	close	will	spoil	
the	table		

Kernel	

ApplicaYon#1	

Onload	
Onload	
FD	

Shared	state	

Shared	state	

Kernel	state	 Trampoline	

close(Onload	FD)	



What	if	I	send	via	non-SF	NIC	
•  1:	socket(,	SOCK_DGRAM,	)	->	s1	
•  2:	sendto(s1,	)	à	accelerated	interface	
•  3:	sendto(s1,	)	à	non-accelerated	interface	

•  Onload	detects	that	you’re	working	with	non-SF	adapter	and	passes	
packet	in	(3)	to	the	kernel	

•  1:	socket(,	SOCK_STREAM,	)	->	s1	
•  2:	bind(INADDR_ANY)	+	listen()	
•  3:	s2	=	accept():	checks	Onload	connecYons	and	then	“Linux”	connecYons	

•  If	s2	is	Linux	we’ll	honor	it	



Control	Plane	
•  ARP	
•  Route	(no	mulY-table	setup)	
•  Interface	addresses	
•  ip	rule	(no	source-based	rouYng)	
•  iptables:	

–  limited	support,	
–  SolarSecure	provides	improved	support,	cool	staYsYcs	and	Norse	

Darklists	integraYon	

•  Control	plane	structures	are	RO	for	userland	



Diff	with	Linux	
•  AutomaYc	detecYon	(>15000	testcases)	
•  Usually	diversity	is	intenYonal	and	can	be	tweaked	with	env	

variable	
•  TCP	protocol	implementaYon	is	a	bit	different	



AcceleraYon:	some	examples	
•  Latency	
•  Local	communicaYon:	

–  TCP	Loopback,		
–  UDP	Loopback	&	UDP	MulYcast,		
–  PIPE	

•  Nginx	



Latency	(UDP)	
•  Linux	raw	data	on	64B	packets	was:	>10ms	:	terrible	

–  Linux	improves,	but	not	fast	

•  Recent	Linux	has	SO_BUSY_POLL:	
–  works	similar	to	SPIN	mode	of	Onload	
–  modify	your	applicaYon	(Java?)	or	
–  enable	it	globally	(CPU)	
–  Onload	spin	happens	in	the	applicaYon	



Latency	(UDP)	
payload	 RHEL7	 RHEL7+busy_

poll	
onload	

1	 6428	 3940	 1653	

2	 6432	 3947	 1652	

4	 6405	 3921	 1651	

8	 6856	 3925	 1653	

16	 6419	 3954	 1653	

32	 6413	 3940	 1681	

64	 6484	 3997	 1707	

128	 6602	 4127	 1823	

256	 7046	 4616	 1974	

512	 7138	 4699	 2146	

1024	 7688	 5255	 2786	

1472	 3324	



Latency	(UDP)	

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 10 100 1000 10000

Latency	(microseconds/pkt-length)

linux	+	busy_poll onload linux



Loopbacks	&	PIPE	
•  TCP	Loopback	or	UDP	unicast	

–  if	sockets	share	the	state,	let’s	communicate	through	it	

•  One	stack,	but	we	have	helpers	that	can:	
–  move	both	sockets	to	either	listen()-er	or	connect()-er	socket,	
–  create	new	stack	and	move	both	socket	to	it.	

•  UDP	loopback	(mulYcast):	
–  replay	to	listeners	in	the	same	stack	
–  replay	to	listeners	from	other	stacks	(and	virtual	machines)	with	HW	

assistance	

•  PIPE	
–  ends	in	the	same	stack	



Nginx:	connecYon	rate	
Co

nn
ec

tio
ns

 pe
r S

ec
on

d

Number of Cores

120,000
100,000
80,000
60,000
40,000
20,000

0

W
hi

te
Pa

pe
r

Figure 1. Solarflare vs. Intel Nginx Performance: Cores and Connections per Second.

Figure 1 plots Nginx performance on the y-axis versus the allocated number of cores on the 
x-axis. Performance is represented as a request rate, in this case, connections per second. The
figure shows that as the number of cores is increased (i.e. additional Nginx instances are run)
the request rate increases until reaching a ceiling of 111.6 thousand connections per second. 

The results show that the Solarflare SFN7002F with OpenOnload delivers a maximum 120% 
increase in Nginx performance over the Intel X710 with Flow Director. With Flow Director off,
OpenOnload yields a 128% boost over the Intel X710. When we look at how many CPU cores
it takes to saturate a 10GbE link, OpenOnload needs two cores. In contrast, the Intel X710
adapter (and the Solarflare adapter with its kernel driver) needs six or more cores. OpenOnload
is therefore found to be three times more efficient than the kernel in its use of CPU resources.

sales@solarflare.com

US 1.949.581.6830 x2930

UK +44 (0)1223 477171

HK +852 2624-8868

www.solarflare.com7

SFN7002F- OpenOnload
SFN7002F- Kernel
X710 - Kernel

10Gbps Connections

1 2 3 4 5 6 8 10 12

Gb
ps

Number of Cores

10

8

6

4

2

0

SFN7002F - OpenOnload
SFN7002F - Kernel
X710 - Kernel

10 Gbps Response Bandwidth

1 2 3 4 5 6 8 10 12

Figure 2. Solarflare vs. Intel Nginx Performance: Cores and Response Bandwidth (Data Rate)

Beyond 10 Gbps: Scaling with OpenOnload and Solarflare Flareon Ultra 40GbE Adapters
The results in Figure 2 above demonstrate that Nginx with OpenOnload can saturate a single
10 Gbps link with the use of very few CPU cores. In order to demonstrate that link bandwidth is
truly the bottleneck, an experiment was conducted with a Solarflare FlareonTM Ultra SFN7142Q
dual-port 40 Gbps adapter. 

•  Maximize	number	of	requests	Nginx	can	handle	
•  Intel	Xeon	E5-2620	v3	processors	with	HT	running	at	2.4	GHz,	and	64	GB	DDR4	

RAM	running	at	1867	MHz	
•  SO_REUSEPORT	is	set	
•  StaYc	content;	10000	in	length	stored	on	RAM	filesystem	



Nginx:	connecYon	rate	
•  How	any	of	what	I’ve	told	helps	connecYon	rate?	



Nginx:	reasons	
•  Reduced	cost	of	networking	calls	
•  Onload	stack	per	worker	means	that	almost	nothing	is	shared:	

no	lock	contenYon	and	cache	bouncing	
•  epoll_wait()	scaling	improved	(latest	release	only!):	O(1)	



Nginx:	socket	caching	
•  We’re	not	going	into	the	kernel	
•  listen()	
•  accept()	à	s1	
•  accept()	à	s2	
•  close(s1)	
•  à	SYN	received:	

–  take	s1	
–  no	need	to	go	to	the	kernel!	



Nginx:	response	bandwidth	(10G)	
Co

nn
ec

tio
ns

 pe
r S

ec
on

d

Number of Cores

120,000
100,000
80,000
60,000
40,000
20,000

0

W
hi

te
Pa

pe
r

Figure 1. Solarflare vs. Intel Nginx Performance: Cores and Connections per Second.

Figure 1 plots Nginx performance on the y-axis versus the allocated number of cores on the 
x-axis. Performance is represented as a request rate, in this case, connections per second. The
figure shows that as the number of cores is increased (i.e. additional Nginx instances are run)
the request rate increases until reaching a ceiling of 111.6 thousand connections per second. 

The results show that the Solarflare SFN7002F with OpenOnload delivers a maximum 120% 
increase in Nginx performance over the Intel X710 with Flow Director. With Flow Director off,
OpenOnload yields a 128% boost over the Intel X710. When we look at how many CPU cores
it takes to saturate a 10GbE link, OpenOnload needs two cores. In contrast, the Intel X710
adapter (and the Solarflare adapter with its kernel driver) needs six or more cores. OpenOnload
is therefore found to be three times more efficient than the kernel in its use of CPU resources.

sales@solarflare.com

US 1.949.581.6830 x2930

UK +44 (0)1223 477171

HK +852 2624-8868

www.solarflare.com7

SFN7002F- OpenOnload
SFN7002F- Kernel
X710 - Kernel

10Gbps Connections

1 2 3 4 5 6 8 10 12

Gb
ps

Number of Cores

10

8

6

4

2

0

SFN7002F - OpenOnload
SFN7002F - Kernel
X710 - Kernel

10 Gbps Response Bandwidth

1 2 3 4 5 6 8 10 12

Figure 2. Solarflare vs. Intel Nginx Performance: Cores and Response Bandwidth (Data Rate)

Beyond 10 Gbps: Scaling with OpenOnload and Solarflare Flareon Ultra 40GbE Adapters
The results in Figure 2 above demonstrate that Nginx with OpenOnload can saturate a single
10 Gbps link with the use of very few CPU cores. In order to demonstrate that link bandwidth is
truly the bottleneck, an experiment was conducted with a Solarflare FlareonTM Ultra SFN7142Q
dual-port 40 Gbps adapter. 



Nginx:	response	bandwidth	(40G)	

W
hi

te
Pa

pe
r

Figure 3. 40GbE Nginx Performance: Cores and Connection Rate.

sales@solarflare.com

US 1.949.581.6830 x2930

UK +44 (0)1223 477171

HK +852 2624-8868

www.solarflare.com8

Future Work
The next phase of Solarflare’s Nginx testing will experiment with different payload sizes, especially
for long-lived HTTP connections such as those used by CDNs and IP video networks. A 
subsequent phase will also include examination of Nginx and Nginx Plus as load balancers.
Solarflare will also test the performance of four 10GbE ports and two 40GbE ports with
OpenOnload and compare and contrast Solarflare with the Intel XL710 10/40GbE server adapter.

Conclusions
With OpenOnload, an industry standard server with a given CPU resource allocation running
Nginx can achieve up to 120% higher throughput than the Intel X710. The Solarflare SFN7002F
with OpenOnload is three times more efficient than the Intel X710 in its use of precious and 
expensive CPU resources. Moreover, the SFN7002F can saturate a 10GbE link with two cores
while the SFN7142Q adapter can saturate a 40GbE link with 10,000 byte payload requests and
the use of 10 cores. With OpenOnload, Nginx performance is only limited by the bandwidth of
the link. 
Bottom line: Nginx applications running with Solarflare have more CPU resources available
that can be used for other applications or to scale to higher transaction rates per server, thus
lowering operating costs.

Co
nn

ec
tio

ns
 p/

s

Number of Cores

500,000
400,000
300,000
200,000
100,000

0

SFN7142Q-OpenOnload
SFN7142Q-Kernel

40 Gbps Connections

1 2 3 4 5 6 8 10 12

Figure 4. 10GbE Nginx Performance: Cores and Response Bandwidth (Data Rate).

Gb
ps

Number of Cores

40

30

20

10

0

SFN7142Q-OpenOnload
SFN7142Q-Kernel

40 Gbps Response Bandwidth

1 2 3 4 5 6 8 10 12

W
hi

te
Pa

pe
r

Figure 3. 40GbE Nginx Performance: Cores and Connection Rate.

sales@solarflare.com

US 1.949.581.6830 x2930

UK +44 (0)1223 477171

HK +852 2624-8868

www.solarflare.com8

Future Work
The next phase of Solarflare’s Nginx testing will experiment with different payload sizes, especially
for long-lived HTTP connections such as those used by CDNs and IP video networks. A 
subsequent phase will also include examination of Nginx and Nginx Plus as load balancers.
Solarflare will also test the performance of four 10GbE ports and two 40GbE ports with
OpenOnload and compare and contrast Solarflare with the Intel XL710 10/40GbE server adapter.

Conclusions
With OpenOnload, an industry standard server with a given CPU resource allocation running
Nginx can achieve up to 120% higher throughput than the Intel X710. The Solarflare SFN7002F
with OpenOnload is three times more efficient than the Intel X710 in its use of precious and 
expensive CPU resources. Moreover, the SFN7002F can saturate a 10GbE link with two cores
while the SFN7142Q adapter can saturate a 40GbE link with 10,000 byte payload requests and
the use of 10 cores. With OpenOnload, Nginx performance is only limited by the bandwidth of
the link. 
Bottom line: Nginx applications running with Solarflare have more CPU resources available
that can be used for other applications or to scale to higher transaction rates per server, thus
lowering operating costs.

Co
nn

ec
tio

ns
 p/

s

Number of Cores

500,000
400,000
300,000
200,000
100,000

0

SFN7142Q-OpenOnload
SFN7142Q-Kernel

40 Gbps Connections

1 2 3 4 5 6 8 10 12

Figure 4. 10GbE Nginx Performance: Cores and Response Bandwidth (Data Rate).

Gb
ps

Number of Cores

40

30

20

10

0

SFN7142Q-OpenOnload
SFN7142Q-Kernel

40 Gbps Response Bandwidth

1 2 3 4 5 6 8 10 12



Nginx:	VOD	
•  1Mbps	stream	
•  Watermark:	1MB	buffer;	next	request	if	buffer	is	at	50%	
•  20000	IP	addresses	
•  WRK	testbench		



Nginx:	VOD	10G	

Te
ch

no
log

yB
rie

f

sales@solarflare.com

US 1.949.581.6830 x2930

UK +44 (0)1223 477171

HK +852 2624-8868

www.solarflare.com

5

At both 10GbE and 40GbE, the benchmarking compared an Intel adapter and the Solarflare
adapter with OpenOnload. 

OpenOnload
In the OpenOnload case Nginx processes were accelerated with OpenOnload configured in
spinning mode. This means that application threads using OpenOnload could busy-wait 
when making network stack calls for a configurable duration, before sleeping and then being
re-scheduled as the result of an interrupt when work arrived. In practice this means that the 
application context performed most tasks that would have otherwise been done in the interrupt
context. As a consequence, OpenOnload generated very little interrupt load, eliminating the
need to dedicate (logical) CPU cores to interrupt handling. Therefore for benchmarking, logical
cores were assigned on the basis of using NIC local package logical cores first, and then using
the NIC remote package cores. Interrupt handlers were assigned to each of the NIC local cores.

Results
Figure 2 represents the summary of the comparative Nginx performance tests for the server
adapters with two 10GbE ports bonded using Link Aggregation. The plot shows the maximum
number of sustained connections against the number of threads (or cores). The maximum limit
of the system under test is of course the bandwidth of the bonded 2x10GbE links. The plots 
of data series show the flattening of the respective performance curves at 18,000 to 19,000 
simultaneous connections.  

The most significant finding is the improved efficiency of the Solarflare SFN7002F adapter with
OpenOnload software versus the Intel adapter with its standard network stack. The Solarflare
adapters need to use only two cores to achieve the maximum limit of about 18,000 simultaneous
connections. The Intel adapter in contrast needs three cores to fill up the bonded bandwidth of
the 2x10GbE links. The Solarflare server adapter with OpenOnload is shown therefore to be
1.5 times more efficient than the Intel adapter. Commensurately, the Solarflare adapter achieves
up to 34% greater performance measured in maximum simultaneous connections than the
Intel adapter.

Nginx Performance 2x10GbE

Figure 2. Maximum simultaneous connections vs. number of cores at 2x10GbE.

6

5

4

3

2

1

5,000                      10,000                       15,000                      20,000

Co
re

s

Connections (Max)

Intel X710
SFN7002F Onload



Nginx:	VOD	40G	

Te
ch

no
log

yB
rie

f
sales@solarflare.com

US 1.949.581.6830 x2930

UK +44 (0)1223 477171

HK +852 2624-8868

www.solarflare.com

6

Figure 3 represents the summary of the comparative tests for the 40GbE server adapters.
The plot shows the maximum number of sustained connections against the number of
threads (or cores). Once again, the Nginx performance of the system under test is ultimately
limited by the bandwidth of the 40GbE link, about 38,000 to 39,000 connections. Similar to the
2x10GbE configuration, the Solarflare SFN7142Q 40GbE server adapter with OpenOnload
is found to be much more efficient in its use of server resources than the Intel adapter. 
The Solarflare solution is able to fill up the link and achieve near maximum performance of
35,000 simultaneous connections with the use of just three cores. In contrast, the Intel
adapter takes four to five cores to achieve maximum Nginx application performance. 
Solarflare shows itself to be up to 1.66 times more efficient than the Intel adapter. Similarly,
Solarflare delivers significant performance increases that range up to 77% higher than the
Intel XL710.  

Nginx Performance 40GbE

Figure 3. Maximum simultaneous connections vs. number of cores at 40GbE.

Conclusions

This Nginx application test was expressly designed to discover the differences between the 
respective server I/O systems, particularly the Solarflare OpenOnload software with SFN7142Q
server adapter versus the Intel software with Intel XL710 server adapter. The benchmarking has
shown that when examining Nginx application performance, Solarflare server adapters with
OpenOnload are more efficient in their use of server resources and can achieve higher 
performance than Intel adapters at both 2X10GbE and 40GbE.  

OpenOnload makes a significant contribution to Solarflare’s greater efficiency and performance.
As discussed above, three key features of OpenOnload contribute to its ability to increase Nginx
application performance. First, OpenOnload allows network processing at user-level, bypassing
the OS kernel and thereby avoiding the overhead of system calls that consume CPU resources. 

8

7

6

5

4

3

2

1

0        10,000      20,000               30,000            40,000

Co
re

s

Connections (Max)

Intel XL710
SFN7142Q Onload



Performance/behaviour	tuning	
•  Very	granular:	

–  Per-applicaYon	
–  Per-stack	
–  Per-socket	(setsockopt()	implementaYon)	

•  Non	Socket	API	funcYons:	
–  Zero	Copy	
–  Ordered	epoll	(RX	packets	from	many	sockets	in	wire	order)	



Thank	you.	

KonstanYn.Ushakov@oktetlabs.ru	
	


