
asyncio: We Did It Wrong

Lynn Root | SRE | @roguelynn

$ whoami

In actuality, what an SRE does at spotify - as it varies widely at different companies - is a
combination of backend development where my team and I run a few services that other
engineers use daily, plus a little devops and system administration.

I'm also our FOSS evangelist: I help a lot of teams release their projects and tools under the
spotify GitHub organization.

Lastly, I help lead PyLadies - a global mentorship group for women, and friends, to help
increase diversity in the Python community.

async all the things

asyncio - The concurrent Python programmer’s dream, the answer to everyone's
asynchronous prayers.

The `asyncio` module has various layers of abstraction allowing developers as much control as
they need and are comfortable with.

Python 3.7.0 (default, Jul 6 2018, 11:30:06)
[Clang 9.1.0 (clang-902.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import asyncio, datetime
>>> async def hello():
... print(f'[{datetime.datetime.now()}] Hello...')
... await asyncio.sleep(1) # some I/O-intensive work
... print(f'[{datetime.datetime.now()}] ...World!')
...
>>> asyncio.run(hello())
[2018-07-07 10:45:55.559856] Hello...
[2018-07-07 10:45:56.568737] ...World!

Simple "Hello, World"-like examples show how it can be so simple, look at that!

But it's easy to get lulled into a false sense of security. This ain't helpful.

Python 3.7.0 (default, Jul 6 2018, 11:30:06)
[Clang 9.1.0 (clang-902.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import asyncio, datetime
>>> async def hello():
... print(f'[{datetime.datetime.now()}] Hello...')
... await asyncio.sleep(1) # some I/O-intensive work
... print(f'[{datetime.datetime.now()}] ...World!')
...
>>> asyncio.run(hello())
[2018-07-07 10:45:55.559856] Hello...
[2018-07-07 10:45:56.568737] ...World!

FAKE NEWS

We're led to believe that we're able to do a lot with the structured `async`/`await` API layer.
Some tutorials, while great for the developer getting their toes wet, try to illustrate real world
examples, but are actually just beefed-up "hello, world"s.

Some even misuse parts of `asyncio`'s interface, allowing one to easily fall into the depths of
callback hell.

Some get you easily up and running with `asyncio`, but then you may not realize it's not
correct or exactly what you want, or only gets you part of the way there. While some tutorials
and walk throughs do a lot to improve upon the basic "hello, world" use case, it is still just a
web crawler. I'm not sure about others, but I'm not building web crawlers at Spotify.

Python 3.7.0 (default, Jul 6 2018, 11:30:06)
[Clang 9.1.0 (clang-902.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import asyncio, datetime
>>> async def hello():
... print(f'[{datetime.datetime.now()}] Hello...')
... await asyncio.sleep(1) # some I/O-intensive work
... print(f'[{datetime.datetime.now()}] ...World!')
...
>>> asyncio.run(hello())
[2018-07-07 10:45:55.559856] Hello...
[2018-07-07 10:45:56.568737] ...World!

FAKE NEWS

Sure, we needed to make a lot of HTTP requests that should be non-blocking. But these
services also had to react to events from a pubsub, measure the progress of actions initiated
from those events, handle any incomplete actions or other external errors, deal with pubsub
message lease management, measure service level indicators, and send metrics. And needed
to use non-`asyncio`-friendly dependencies. This quickly got difficult.

Python 3.7.0 (default, Jul 6 2018, 11:30:06)
[Clang 9.1.0 (clang-902.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import asyncio, datetime
>>> async def hello():
... print(f'[{datetime.datetime.now()}] Hello...')
... await asyncio.sleep(1) # some I/O-intensive work
... print(f'[{datetime.datetime.now()}] ...World!')
...
>>> asyncio.run(hello())
[2018-07-07 10:45:55.559856] Hello...
[2018-07-07 10:45:56.568737] ...World!

FAKE NEWS

Sure, we needed to make a lot of HTTP requests that should be non-blocking. But these
services also had to react to events from a pubsub, measure the progress of actions initiated
from those events, handle any incomplete actions or other external errors, deal with pubsub
message lease management, measure service level indicators, and send metrics. And needed
to use non-`asyncio`-friendly dependencies. This quickly got difficult.

Allow me to provide you a real-world example that actually comes from the real world.
Recently at Spotify, we built a service that does periodic hard restarts our entire fleet of
instances.

 building mayhem mandrill
And we’re going to do that here. Let’s build a service called Mayhem Mandrill which will listen
for a pub/sub message and restart a host based off of that message. As we build this service,
I’ll point out the traps that I may or may not have fallen into. This will essentially become the
type of resource that past Lynn would have wanted a year or two ago.

initial setup

We’ll start with some foundational code…

initial setup
foundations for a pub/sub

This is pretty much inspired by a tutorial from asyncio’s documentation.

async def publish(queue, n):
 choices = string.ascii_lowercase + string.digits
 for x in range(1, n + 1):
 host_id = ''.join(random.choices(choices, k=4))
 msg = Message(msg_id=x, inst_name=f'cattle-{host_id}')
 await queue.put(msg)
 logging.info(f'Published {x} of {n} messages')

 await queue.put(None) # publisher is done

initial setup: foundations for a pub/sub
<describe code>

async def consume(queue):
 while True:
 msg = await queue.get()

 if msg is None: # publisher is done
 break

 logging.info(f'Consumed {msg}')
 # unhelpful simulation of an i/o operation
 await asyncio.sleep(random.random())

initial setup: foundations for a pub/sub
<describe code>

async def publish(queue, n):
 ...

async def consume(queue):
 ...

queue = asyncio.Queue()
asyncio.run(publish(queue, 5))
asyncio.run(consume(queue))

initial setup: foundations for a pub/sub
Using Python 3.7's latest syntactic sugar! <TODO:expand>

When we run this, we see the following:

$ python mandrill/mayhem.py

14:36:21,802 INFO: Published 1 of 5 messages
14:36:21,802 INFO: Published 2 of 5 messages
14:36:21,802 INFO: Published 3 of 5 messages
14:36:21,802 INFO: Published 4 of 5 messages
14:36:21,803 INFO: Published 5 of 5 messages
14:36:21,804 INFO: Consumed Message(inst_name='cattle-jg4t')
14:36:22,780 INFO: Consumed Message(inst_name='cattle-hz84')
14:36:23,558 INFO: Consumed Message(inst_name='cattle-kd7q')
14:36:23,938 INFO: Consumed Message(inst_name='cattle-z0ww')
14:36:24,815 INFO: Consumed Message(inst_name='cattle-3hka')

initial setup: foundations for a pub/sub
<describe>

So let's work off of this. We'll first start with boilerplate-like code to start and stop this pub/sub
simulator.

initial setup
running an asyncio-based service

<NEW>So far, we don't have a running service…

async def publish(queue, n):
 ...

async def consume(queue):
 ...

queue = asyncio.Queue()
asyncio.run(publish(queue, 5))
asyncio.run(consume(queue))

initial setup: running an asyncio-based service
<NEW>…it’s merely just a pipeline or a batch job right now. Note that `asyncio.run` is new as
of 3.7,

async def publish(queue, n):
 ...

async def consume(queue):
 ...

queue = asyncio.Queue()
loop = asyncio.get_event_loop()
loop.run_until_complete(publish(queue, 5))
loop.run_until_complete(consume(queue))
loop.close()

initial setup: running an asyncio-based service
<NEW>before 3.7, we had to setup and teardown the loop ourselves like this. Note that it is a
good habit to clean up and close the event loop since we created it.

async def publish(queue, n):
 ...

async def consume(queue):
 ...

queue = asyncio.Queue()
loop = asyncio.get_event_loop()
loop.create_task(publish(queue, 5))
loop.create_task(consume(queue))
loop.run_forever()
loop.close()

initial setup: running an asyncio-based service
<NEW>but this is a service, so we don’t want it to just run once, but continually consume from
a publisher. And unfortunately, there isn’t a decent way to start a long-running service that is
not an HTTP server in python 3.7. So we’ll stick with 3.6 approach,

initial setup: running an asyncio-based service
async def publish(queue, n):
 ...

async def consume(queue):
 ...

queue = asyncio.Queue()
loop = asyncio.get_event_loop()
loop.create_task(publish(queue, 5))
loop.create_task(consume(queue))
loop.run_forever()
loop.close()

<NEW>With that, we’ll create tasks out of the two coroutines, which will schedule them on the
loop. And then start the loop, telling it to run forever.

So then running with this updated code…

19:45:17,540 INFO: Published 1 of 5 messages
19:45:17,540 INFO: Published 2 of 5 messages
19:45:17,541 INFO: Published 3 of 5 messages
19:45:17,541 INFO: Published 4 of 5 messages
19:45:17,541 INFO: Published 5 of 5 messages
19:45:17,541 INFO: Consumed Message(inst_name='cattle-ms1t')
19:45:17,749 INFO: Consumed Message(inst_name='cattle-p6l9')
19:45:17,958 INFO: Consumed Message(inst_name='cattle-kd7q')
19:45:18,238 INFO: Consumed Message(inst_name='cattle-z0ww')
19:45:18,415 INFO: Consumed Message(inst_name='cattle-3hka')
^CTraceback (most recent call last):
 File "mandrill/mayhem.py", line 68, in <module>
 loop.run_forever()
 File "/Users/lynn/.pyenv/versions/3.7.0/lib/python3.7/asyncio/base_events.py", line 523, in run_forever
 self._run_once()
 File "/Users/lynn/.pyenv/versions/3.7.0/lib/python3.7/asyncio/base_events.py", line 1722, in _run_once
 event_list = self._selector.select(timeout)
 File "/Users/lynn/.pyenv/versions/3.7.0/lib/python3.7/selectors.py", line 558, in select

initial setup: running an asyncio-based service
...we see that all messages are published and then consumed, and then we hang, because
there is no more work to be done (we only published 5 messages, after all). To stop the
process, we have to interrupt it (via ^C or sending a signal like kill -9 <pid>).

So yeah, That's nice and ugly... You may notice that we'll also never get to the loop.close() line
either. Nor are we handling any exceptions that may raise from awaiting the publish and
consume coroutines.

initial setup
defensively run the event loop

We'll first address the catching of exceptions that arise from coroutines. Let's fake an error in
the consume coroutine:

async def consume(queue):
 while True:
 msg = await queue.get()

 if msg is None: # publisher is done
 break

 logging.info(f'Consumed {msg}')
 # unhelpful simulation of an i/o operation
 await asyncio.sleep(random.random())

initial setup: defensively run the event loop
So this is where we started

async def consume(queue):
 while True:
 msg = await queue.get()
 # super-realistic simulation of an exception
 if msg.msg_id == 4:
 raise Exception('an exception happened!')

 if msg is None: # publisher is done
 break

 logging.info(f'Consumed {msg}')
 # unhelpful simulation of an i/o operation
 await asyncio.sleep(random.random())

initial setup: defensively run the event loop
Now I’m just going to add a fake error, so if the message ID is equal to 4, we get some silly
generic exception.

Now if we run it as is

17:39:52,933 INFO: Published 1 of 5 messages
17:39:52,933 INFO: Published 2 of 5 messages
17:39:52,933 INFO: Published 3 of 5 messages
17:39:52,933 INFO: Published 4 of 5 messages
17:39:52,933 INFO: Published 5 of 5 messages
17:39:52,933 INFO: Consumed Message(inst_name='cattle-cu7f')
17:39:53,876 INFO: Consumed Message(inst_name='cattle-xihm')
17:39:54,599 INFO: Consumed Message(inst_name='cattle-clnn')
17:39:55,051 ERROR: Task exception was never retrieved
future: exception=Exception('an exception happened!')>
Traceback (most recent call last):
 File "mandrill/mayhem.py", line 52, in consume
 raise Exception('an exception happened!')
Exception: an exception happened!
^CTraceback (most recent call last):
 File "mandrill/mayhem.py", line 72, in
 loop.run_forever()
 File "/Users/lynn/.pyenv/versions/3.7.0/lib/python3.7/asyncio/base_events.py", line 523, in run_forever

initial setup: defensively run the event loop
We get an error saying "exception was never retrieved.”…

initial setup: defensively run the event loop
17:39:52,933 INFO: Published 1 of 5 messages
17:39:52,933 INFO: Published 2 of 5 messages
17:39:52,933 INFO: Published 3 of 5 messages
17:39:52,933 INFO: Published 4 of 5 messages
17:39:52,933 INFO: Published 5 of 5 messages
17:39:52,933 INFO: Consumed Message(inst_name='cattle-cu7f')
17:39:53,876 INFO: Consumed Message(inst_name='cattle-xihm')
17:39:54,599 INFO: Consumed Message(inst_name='cattle-clnn')
17:39:55,051 ERROR: Task exception was never retrieved
future: exception=Exception('an exception happened!')>
Traceback (most recent call last):
 File "mandrill/mayhem.py", line 52, in consume
 raise Exception('an exception happened!')
Exception: an exception happened!
^CTraceback (most recent call last):
 File "mandrill/mayhem.py", line 72, in
 loop.run_forever()
 File "/Users/lynn/.pyenv/versions/3.7.0/lib/python3.7/asyncio/base_events.py", line 523, in run_forever

…from our faked exception. This is admittedly a part of the asyncio API that's not that friendly.
If this was synchronous code, we'd simply see the error that we raised, and the script itself
would fail. But it get's swallowed up into this unretrieved task.

So to deal with this, as advised in the asyncio documentation [1] , we'll need to have a
wrapper coroutine to consume the exception and stop the loop.

[1] https://docs.python.org/3/library/asyncio-dev.html#detect-exceptions-never-consumed

async def handle_exception(coro, loop):
 try:
 await coro
 except Exception as e:
 logging.error(f'Caught exception: {e}')
 loop.stop() # may not need/want to do this

initial setup: defensively run the event loop
So we make a little top-level wrapper to run and handle exceptions from coroutines. And we’re
just deciding to force our service to crash hard by stopping the event loop if we do happen
upon an exception.

async def handle_exception(coro, loop):
 ...

if __name__ == '__main__':
 queue = asyncio.Queue()

 loop = asyncio.get_event_loop()
 loop.create_task(handle_exception(publish(queue, 5), loop))
 loop.create_task(handle_exception(consume(queue), loop))
 try:
 loop.run_forever()
 finally:
 logging.info('Cleaning up')
 loop.close()

initial setup: defensively run the event loop
Updating our main section, we wrap our publish and consume coroutine functions with the
handle_exception.

So now when we run our script, we get something a little cleaner:

17:46:01,208 INFO: Published 1 of 5 messages
17:46:01,208 INFO: Published 2 of 5 messages
17:46:01,208 INFO: Published 3 of 5 messages
17:46:01,208 INFO: Published 4 of 5 messages
17:46:01,209 INFO: Published 5 of 5 messages
17:46:01,209 INFO: Consumed Message(inst_name='cattle-hotv')
17:46:01,824 INFO: Consumed Message(inst_name='cattle-un2v')
17:46:02,139 INFO: Consumed Message(inst_name='cattle-0qe3')
17:46:02,671 ERROR: Caught exception: an exception happened!
17:46:02,672 INFO: Cleaning up

initial setup: defensively run the event loop
Ah that's a bit more clear.

• Don’t accidentally swallow exceptions; be sure to  
 “retrieve” them

• Clean up after yourself – loop.close()

initial setup: defensively run the event loop
So far, for setting up an asyncio service, you want to be sure you surface the exceptions from
your coroutines, and to clean up what you've created. We'll expand on that clean up bit later
on. This is clean enough for now.

we’re still blocking

I've seen quite a tutorials that make use of async and await in a way that, while does not block
the event loop, is still iterating through tasks serially, effectively not actually adding any
concurrency.

Taking a look at where our script is now:

async def publish(queue, n):
 choices = string.ascii_lowercase + string.digits
 for x in range(1, n + 1):
 host_id = ''.join(random.choices(choices, k=4))
 msg = Message(msg_id=x, instance_name=f'cattle-{host_id}')
 await queue.put(msg)
 logging.info(f'Published {x} of {n} messages')

 await queue.put(None) # publisher is done

we’re still blocking
As this was adapted from the asyncio tutorial [1], we are still serially processing each item we
produce, and then consume. The event loop itself isn't blocked; if we had other tasks/
coroutines going on, they of course wouldn't be blocked.

This might seem obvious to some, but it definitely isn't to all. We are blocking ourselves; first
we produce all the messages, one by one.

[1] http://asyncio.readthedocs.io/en/latest/producer_consumer.html

async def consume(queue):
 while True:
 msg = await queue.get()
 if msg.msg_id == 4:
 raise Exception('an exception happened!')

 if msg is None: # publisher is done
 break

 logging.info(f'Consumed {msg}')
 await asyncio.sleep(random.random()) # some i/o work

we’re still blocking
Then we consume them, one by one. The loops we have (for x in range(1, n+1) in publish(),
and while True in consume()) block ourselves from moving onto the next message while we
await to do something.

While this is technically a working example of a pub/sub-like queue with asyncio, it's not what
we want. It’s no different than synchronous code. Whether we are building an event-driven
service (like this walk through), or a pipeline/batch job, we're not taking advantage of the
concurrency that asyncio can provide.

adding concurrency
concurrent publisher

Let’s start with the publisher part

async def publish(queue, n):
 choices = string.ascii_lowercase + string.digits
 for x in range(1, n + 1):
 host_id = ''.join(random.choices(choices, k=4))
 msg = Message(msg_id=x, instance_name=f’cattle-{host_id}')
 await queue.put(msg)
 logging.info(f'Published {x} of {n} messages')

 await queue.put(None) # publisher is done

unblocking: concurrent publisher
Here is where we’re starting.

async def publish(queue):
 choices = string.ascii_lowercase + string.digits
 while True:
 host_id = ''.join(random.choices(choices, k=4))
 msg = Message(msg_id=str(uuid.uuid4()),
 inst_name=f'cattle-{host_id}')

 await queue.put(msg)
 logging.info(f'Published {msg}')

 # simulate randomness of publishing messages
 await asyncio.sleep(random.random())

unblocking: concurrent publisher
And we essentially throw in a `while True` loop, removing the need to provide a set number of
messages to publish. I’ve also just added the creation of a unique ID for each message
produced, since it’s no longer as simple as 1 through 5.

One other thing…

async def publish(queue):
 choices = string.ascii_lowercase + string.digits
 while True:
 host_id = ''.join(random.choices(choices, k=4))
 msg = Message(msg_id=str(uuid.uuid4()),
 inst_name=f'cattle-{host_id}')

 asyncio.create_task(queue.put(msg))
 logging.info(f'Published {msg}')

 # simulate randomness of publishing messages
 await asyncio.sleep(random.random())

unblocking: concurrent publisher
I’m also going to remove the `await` for the `queue.put` and…

unblocking: concurrent publisher
async def publish(queue):
 choices = string.ascii_lowercase + string.digits
 while True:
 host_id = ''.join(random.choices(choices, k=4))
 msg = Message(msg_id=str(uuid.uuid4()),
 inst_name=f'cattle-{host_id}')

 asyncio.create_task(queue.put(msg))
 logging.info(f'Published {msg}')

 # simulate randomness of publishing messages
 await asyncio.sleep(random.random())

… replace it with create_task. The asyncio.create_task will actually schedule the coroutine on
the loop without blocking the rest of the for-loop. The create_task method does return a task,
but we can also use it as a “fire and forget” mechanism.

async def publish(queue):
 choices = string.ascii_lowercase + string.digits
 while True:
 host_id = ''.join(random.choices(choices, k=4))
 msg = Message(msg_id=str(uuid.uuid4()),
 inst_name=f'cattle-{host_id}')

 await queue.put(msg)
 logging.info(f'Published {msg}')

 # simulate randomness of publishing messages
 await asyncio.sleep(random.random())

unblocking: concurrent publisher
If we left the `await` in here, everything after it will be blocked. This isn’t an issue in our current
setup; it could be if we limit the size of the queue, then that await would be waiting on space
to free up in the queue.

async def publish(queue):
 choices = string.ascii_lowercase + string.digits
 while True:
 host_id = ''.join(random.choices(choices, k=4))
 msg = Message(msg_id=str(uuid.uuid4()),
 inst_name=f'cattle-{host_id}')

 asyncio.create_task(queue.put(msg))
 logging.info(f'Published {msg}')

 # simulate randomness of publishing messages
 await asyncio.sleep(random.random())

unblocking: concurrent publisher
So using `create_task` tells the loop to put the message on the queue as soon as it gets a
chance, and allows us to continue on publishing messages.

Now in running this:

18:08:02,995 INFO: Published Message(inst_name='cattle-w8kz')
18:08:03,988 INFO: Published Message(inst_name='cattle-fr4o')
18:08:04,587 INFO: Published Message(inst_name='cattle-vlyg')
18:08:05,270 INFO: Published Message(inst_name='cattle-v6zu')
18:08:05,558 INFO: Published Message(inst_name='cattle-mws2')
^C18:08:05,903 INFO: Cleaning up
Traceback (most recent call last):
 File "mandrill/mayhem.py", line 60, in
 loop.run_forever()
 File "/Users/lynn/.pyenv/versions/3.7.0/lib/python3.7/asyncio/base_events.py", line 523, in run_forever
 self._run_once()
 File "/Users/lynn/.pyenv/versions/3.7.0/lib/python3.7/asyncio/base_events.py", line 1722, in _run_once
 event_list = self._selector.select(timeout)
 File "/Users/lynn/.pyenv/versions/3.7.0/lib/python3.7/selectors.py", line 558, in select
 kev_list = self._selector.control(None, max_ev, timeout)
KeyboardInterrupt

unblocking: concurrent publisher
We're happily creating and publishing messages,…

18:08:02,995 INFO: Published Message(inst_name='cattle-w8kz')
18:08:03,988 INFO: Published Message(inst_name='cattle-fr4o')
18:08:04,587 INFO: Published Message(inst_name='cattle-vlyg')
18:08:05,270 INFO: Published Message(inst_name='cattle-v6zu')
18:08:05,558 INFO: Published Message(inst_name='cattle-mws2')
^C18:08:05,903 INFO: Cleaning up
Traceback (most recent call last):
 File "mandrill/mayhem.py", line 60, in
 loop.run_forever()
 File "/Users/lynn/.pyenv/versions/3.7.0/lib/python3.7/asyncio/base_events.py", line 523, in run_forever
 self._run_once()
 File "/Users/lynn/.pyenv/versions/3.7.0/lib/python3.7/asyncio/base_events.py", line 1722, in _run_once
 event_list = self._selector.select(timeout)
 File "/Users/lynn/.pyenv/versions/3.7.0/lib/python3.7/selectors.py", line 558, in select
 kev_list = self._selector.control(None, max_ev, timeout)
KeyboardInterrupt

unblocking: concurrent publisher
but you'll notice that KeyboardInterrupt – trigged by the ^C – is not actually caught.

if __name__ == '__main__':
 queue = asyncio.Queue()

 loop = asyncio.get_event_loop()
 try:  
 loop.create_task(handle_exception(publish(queue), loop))
 loop.run_forever()
 except KeyboardInterrupt:
 logging.info('Interrupted')
 finally:
 logging.info('Cleaning up')
 loop.close()

unblocking: concurrent publisher
Let's quickly clean up that traceback…

unblocking: concurrent publisher
if __name__ == '__main__':
 queue = asyncio.Queue()

 loop = asyncio.get_event_loop()
 try:  
 loop.create_task(handle_exception(publish(queue), loop))
 loop.run_forever()
 except KeyboardInterrupt:
 logging.info('Interrupted')
 finally:
 logging.info('Cleaning up')
 loop.close()

…from the KeyboardInterrupt; it's a quick bandaid, as I’ll explain further on.

So now we see:

18:09:48,337 INFO: Published Message(inst_name='cattle-s8x2')
18:09:48,643 INFO: Published Message(inst_name='cattle-4aat')
18:09:48,995 INFO: Published Message(inst_name='cattle-w8kz')
18:09:51,988 INFO: Published Message(inst_name='cattle-fr4o')
18:09:54,587 INFO: Published Message(inst_name='cattle-vlyg')
18:09:55,270 INFO: Published Message(inst_name='cattle-v6zu')
18:09:55,558 INFO: Published Message(inst_name='cattle-mws2')
^C18:09:56,083 INFO: Interrupted
18:09:56,083 INFO: Cleaning up

unblocking: concurrent publisher
Fantastic! Much cleaner.

async def publish(queue):
 choices = string.ascii_lowercase + string.digits
 while True:
 host_id = ''.join(random.choices(choices, k=4))
 msg = Message(msg_id=str(uuid.uuid4()),
 inst_name=f'cattle-{host_id}')

 asyncio.create_task(queue.put(msg))
 logging.info(f'Published {msg}')

 # simulate randomness of publishing messages
 await asyncio.sleep(random.random())

unblocking: concurrent publisher
So, it's probably hard to see how this is concurrent right now.

unblocking: concurrent publisher
async def publish(queue, publisher_id):
 choices = string.ascii_lowercase + string.digits
 while True:
 host_id = ''.join(random.choices(choices, k=4))
 msg = Message(msg_id=str(uuid.uuid4()),
 inst_name=f'cattle-{host_id}')

 asyncio.create_task(queue.put(msg))
 logging.info(f'[{publisher_id}] Published {msg}')

 # simulate randomness of publishing messages
 await asyncio.sleep(random.random())

Let's have multiple publishers.

unblocking: concurrent publisher
async def publish(queue, publisher_id):
 choices = string.ascii_lowercase + string.digits
 while True:
 host_id = ''.join(random.choices(choices, k=4))
 msg = Message(msg_id=str(uuid.uuid4()),
 inst_name=f'cattle-{host_id}')

 asyncio.create_task(queue.put(msg))
 logging.info(f'[{publisher_id}] Published {msg}')

 # simulate randomness of publishing messages
 await asyncio.sleep(random.random())

I’ll just add another argument for a publisher ID to be logged on every publish of a message

if __name__ == '__main__':
 # <--snip-->
 coros = [
 handle_exception(publish(queue, i), loop)
 for i in range(1, 4)
]

 try:
 [loop.create_task(coro) for coro in coros]
 loop.run_forever()
 except KeyboardInterrupt:
 logging.info('Interrupted')
 finally:
 logging.info('Cleaning up')
 loop.close()

unblocking: concurrent publisher
We'll create three publishers real quick, and when running:

10:16:52,588 INFO: [1] Published Message(inst_name='cattle-8msp')
10:16:52,588 INFO: [2] Published Message(inst_name='cattle-gvx3')
10:16:52,589 INFO: [3] Published Message(inst_name='cattle-aim2')
10:16:52,941 INFO: [1] Published Message(inst_name='cattle-fnmw')
10:16:53,125 INFO: [3] Published Message(inst_name='cattle-nkd8')
10:16:53,164 INFO: [3] Published Message(inst_name='cattle-lnz9')
10:16:53,235 INFO: [1] Published Message(inst_name='cattle-bxlo')
10:16:53,431 INFO: [2] Published Message(inst_name='cattle-qht0')
10:16:53,526 INFO: [3] Published Message(inst_name='cattle-tsz9')
10:16:53,740 INFO: [1] Published Message(inst_name='cattle-m19d')
10:16:53,949 INFO: [3] Published Message(inst_name='cattle-lk2l')
10:16:54,007 INFO: [3] Published Message(inst_name='cattle-w728')
10:16:54,151 INFO: [1] Published Message(inst_name='cattle-3ax4')
10:16:54,240 INFO: [3] Published Message(inst_name='cattle-uuhc')
10:16:54,260 INFO: [2] Published Message(inst_name='cattle-wdc6')
10:16:54,260 INFO: [3] Published Message(inst_name='cattle-8o5z')

unblocking: concurrent publisher
Huzzah! …

unblocking: concurrent publisher
10:16:52,588 INFO: [1] Published Message(inst_name='cattle-8msp')
10:16:52,588 INFO: [2] Published Message(inst_name='cattle-gvx3')
10:16:52,589 INFO: [3] Published Message(inst_name='cattle-aim2')
10:16:52,941 INFO: [1] Published Message(inst_name='cattle-fnmw')
10:16:53,125 INFO: [3] Published Message(inst_name='cattle-nkd8')
10:16:53,164 INFO: [3] Published Message(inst_name='cattle-lnz9')
10:16:53,235 INFO: [1] Published Message(inst_name='cattle-bxlo')
10:16:53,431 INFO: [2] Published Message(inst_name='cattle-qht0')
10:16:53,526 INFO: [3] Published Message(inst_name='cattle-tsz9')
10:16:53,740 INFO: [1] Published Message(inst_name='cattle-m19d')
10:16:53,949 INFO: [3] Published Message(inst_name='cattle-lk2l')
10:16:54,007 INFO: [3] Published Message(inst_name='cattle-w728')
10:16:54,151 INFO: [1] Published Message(inst_name='cattle-3ax4')
10:16:54,240 INFO: [3] Published Message(inst_name='cattle-uuhc')
10:16:54,260 INFO: [2] Published Message(inst_name='cattle-wdc6')
10:16:54,260 INFO: [3] Published Message(inst_name='cattle-8o5z')

We can see some concurrency among the publishers.

For the rest of the walk through, I'll remove the multiple publishers; this was just to easily
convey that it's now concurrent, not just non-blocking.

adding concurrency
concurrent consumer

Now time to add concurrency to the consumer bit. For this, the goal is to constantly consume
messages from the queue and create non-blocking work based off of a newly-consumed
message; in this case, to restart an instance.

The tricky part is the consumer needs to be written in a way that the consumption of a new
message from the queue is separate from when the consumption happens. In other words, we
have to simulate being "event-driven" by regularly pulling for a message in the queue since
there's no way to trigger work based off of a new message available in the queue (a.k.a. push-
based). Remember that the producer coroutine function is merely meant to simulate an
external pub/sub like Google Cloud Pub/Sub (not promoting, just most familiar).

async def consume(queue):
 while True:
 msg = await queue.get()

 if msg is None: # publisher is done
 break

 logging.info(f'Consumed {msg}')
 # unhelpful simulation of an i/o operation
 await asyncio.sleep(random.random())

unblocking: concurrent consumer
Looking again at where we’re starting from. We’ll just remove the `if msg is None` part,

async def consume(queue):
 while True:
 msg = await queue.get()

 logging.info(f'Consumed {msg}')
 # unhelpful simulation of an i/o operation
 await asyncio.sleep(random.random())

unblocking: concurrent consumer
…since the publisher won’t ever be done.

Now instead of an `asyncio.sleep` within the consumer, we’ll

async def restart_host(msg):
 # unhelpful simulation of i/o work
 await asyncio.sleep(random.random())
 msg.restarted = True
 logging.info(f'Restarted {msg.hostname}')

async def consume(queue):
 while True:
 msg = await queue.get()
 logging.info(f'Pulled {msg}')

 await restart_host(msg)

unblocking: concurrent consumer
Write a coroutine function that mocks the restart work that needs to be done on any
consumed message. Just separate out the faked io work that’s done based on a message
versus actually consuming the message.

async def restart_host(msg):
 # unhelpful simulation of i/o work
 await asyncio.sleep(random.random())
 msg.restarted = True
 logging.info(f'Restarted {msg.hostname}')

async def consume(queue):
 while True:
 msg = await queue.get()
 logging.info(f'Pulled {msg}')

 asyncio.create_task(restart_host(msg))

unblocking: concurrent consumer
We’ll also create a task out of restart_host. For similar reasons with the publisher, we don’t
want to unnecessarily block the consumption of messages.

We will leave the `await` for the `queue.get`. It makes sense to block on this because we can’t
do much if there are no messages to consume.

I should note that when I say that this await blocks, it doesn’t block the event loop. Other
tasks on the loop will continue. It just blocks the logic that comes after it.

if __name__ == '__main__':
 queue = asyncio.Queue()
 loop = asyncio.get_event_loop()
 publisher_coro = handle_exception(publish(queue), loop)
 consumer_coro = handle_exception(consume(queue), loop)

 try:
 loop.create_task(publisher_coro)
 loop.create_task(consumer_coro)
 loop.run_forever()
 except KeyboardInterrupt:
 logging.info('Interrupted')
 finally:
 logging.info('Cleaning up')
 loop.close()

unblocking: concurrent consumer
Ok so then re-adding…

unblocking: concurrent consumer
if __name__ == '__main__':
 queue = asyncio.Queue()
 loop = asyncio.get_event_loop()
 publisher_coro = handle_exception(publish(queue), loop)
 consumer_coro = handle_exception(consume(queue), loop)

 try:
 loop.create_task(publisher_coro)
 loop.create_task(consumer_coro)
 loop.run_forever()
 except KeyboardInterrupt:
 logging.info('Interrupted')
 finally:
 logging.info('Cleaning up')
 loop.close()

… it to our main section

10:03:56,842 INFO: Published Message(inst_name='cattle-ief8')
10:03:56,842 INFO: Pulled Message(inst_name='cattle-ief8')
10:03:56,897 INFO: Published Message(inst_name='cattle-kp4i')
10:03:57,487 INFO: Restarted cattle-ief8.example.net
10:03:57,487 INFO: Pulled Message(inst_name='cattle-kp4i')
10:03:57,833 INFO: Published Message(inst_name='cattle-fz26')
10:03:57,911 INFO: Published Message(inst_name='cattle-gjts')
10:03:58,458 INFO: Restarted cattle-kp4i.example.net
10:03:58,458 INFO: Pulled Message(inst_name='cattle-fz26')
10:03:58,602 INFO: Published Message(inst_name='cattle-a7pg')
10:03:58,783 INFO: Published Message(inst_name='cattle-r0pw')
10:03:59,082 INFO: Published Message(inst_name='cattle-vxiq')
10:03:59,380 INFO: Restarted cattle-fz26.example.net
10:03:59,380 INFO: Pulled Message(inst_name='cattle-gjts')
10:03:59,564 INFO: Published Message(inst_name='cattle-yn0l')
^C10:03:59,764 INFO: Interrupted
10:03:59,764 INFO: Cleaning up

unblocking: concurrent consumer
Nice. We're now pulling for messages whenever they're available.

adding concurrency:
concurrent work

We may want to do more than one thing per message.

async def restart_host(msg):
 # unhelpful simulation of i/o work
 await asyncio.sleep(random.random())
 msg.restarted = True
 logging.info(f'Restarted {msg.hostname}')

async def save(msg):
 # unhelpful simulation of i/o work
 await asyncio.sleep(random.random())
 msg.saved = True
 logging.info(f'Saved {msg} into database')

unblocking: concurrent work
For example, we'd like to store the message in a database for potentially replaying later as
well as initiate a restart of the given host:

async def restart_host(msg):
 ...

async def save(msg):
 ...

async def consume(queue):
 while True:
 msg = await queue.get()
 logging.info(f'Pulled {msg}')

 asyncio.create_task(save(msg))
 asyncio.create_task(restart_host(msg))

unblocking: concurrent work
We’ll make use asyncio.create_task again for the save coroutine to be scheduled on the loop,
basically chucking it over to the loop for it to execute when it next can.

18:49:23,043 INFO: Saved Message(inst_name='cattle-1wdy') into database
18:49:23,279 INFO: Pulled Message(inst_name='cattle-e9rl')
18:49:23,370 INFO: Restarted cattle-1wdy.example.net
18:49:23,479 INFO: Pulled Message(inst_name='cattle-crnh')
18:49:23,612 INFO: Saved Message(inst_name='cattle-crnh') into database
18:49:24,155 INFO: Restarted cattle-e9rl.example.net
18:49:24,173 INFO: Saved Message(inst_name='cattle-e9rl') into database
18:49:24,259 INFO: Pulled Message(inst_name='cattle-hbbd')
18:49:24,279 INFO: Restarted cattle-crnh.example.net
18:49:24,292 INFO: Pulled Message(inst_name='cattle-8mg0')
18:49:24,324 INFO: Saved Message(inst_name='cattle-hbbd') into database
18:49:24,550 INFO: Saved Message(inst_name='cattle-8mg0') into database
18:49:24,716 INFO: Pulled Message(inst_name='cattle-hyv1')
18:49:24,817 INFO: Restarted cattle-hbbd.example.net
18:49:25,017 INFO: Saved Message(inst_name='cattle-hyv1') into database
18:49:25,108 INFO: Pulled Message(inst_name='cattle-w15b')

unblocking: concurrent work
Running it, we see

unblocking: concurrent work
18:49:23,043 INFO: Saved Message(inst_name='cattle-1wdy') into database
18:49:23,279 INFO: Pulled Message(inst_name='cattle-e9rl')
18:49:23,370 INFO: Restarted cattle-1wdy.example.net
18:49:23,479 INFO: Pulled Message(inst_name='cattle-crnh')
18:49:23,612 INFO: Saved Message(inst_name='cattle-crnh') into database
18:49:24,155 INFO: Restarted cattle-e9rl.example.net
18:49:24,173 INFO: Saved Message(inst_name='cattle-e9rl') into database
18:49:24,259 INFO: Pulled Message(inst_name='cattle-hbbd')
18:49:24,279 INFO: Restarted cattle-crnh.example.net
18:49:24,292 INFO: Pulled Message(inst_name='cattle-8mg0')
18:49:24,324 INFO: Saved Message(inst_name='cattle-hbbd') into database
18:49:24,550 INFO: Saved Message(inst_name='cattle-8mg0') into database
18:49:24,716 INFO: Pulled Message(inst_name='cattle-hyv1')
18:49:24,817 INFO: Restarted cattle-hbbd.example.net
18:49:25,017 INFO: Saved Message(inst_name='cattle-hyv1') into database
18:49:25,108 INFO: Pulled Message(inst_name='cattle-w15b')

That for every message, we may either restart or save it first, showing some asynchronous
work going on; we also don’t block the consumption of messages with the work we do
generated by each message.

async def restart_host(msg):
 ...

async def save(msg):
 ...

async def consume(queue):
 while True:
 msg = await queue.get()
 logging.info(f'Pulled {msg}')

 asyncio.create_task(save(msg))
 asyncio.create_task(restart_host(msg))

unblocking: concurrent work
To illustrate what I mean a little better, let’s switch

async def restart_host(msg):
 ...

async def save(msg):
 ...

async def consume(queue):
 while True:
 msg = await queue.get()
 logging.info(f'Pulled {msg}')

 await save(msg)
 await restart_host(msg)

unblocking: concurrent work
create_task for save and restart, to awaiting them.

12:32:02,486 INFO: Pulled Message(inst_name='cattle-3rer')
12:32:03,143 INFO: Saved Message(inst_name='cattle-3rer') into database
12:32:03,154 INFO: Restarted cattle-3rer.example.net
12:32:03,154 INFO: Pulled Message(inst_name='cattle-caqp')
12:32:03,523 INFO: Saved Message(inst_name='cattle-caqp') into database
12:32:03,723 INFO: Restarted cattle-caqp.example.net
12:32:03,723 INFO: Pulled Message(inst_name='cattle-yicw')
12:32:04,486 INFO: Saved Message(inst_name='cattle-yicw') into database
12:32:05,419 INFO: Restarted cattle-yicw.example.net
12:32:05,419 INFO: Pulled Message(inst_name='cattle-aj80')
12:32:05,546 INFO: Saved Message(inst_name='cattle-aj80') into database
12:32:06,249 INFO: Restarted cattle-aj80.example.net
12:32:06,249 INFO: Pulled Message(inst_name='cattle-qgh6')
12:32:07,137 INFO: Saved Message(inst_name='cattle-qgh6') into database
12:32:07,384 INFO: Restarted cattle-qgh6.example.net
12:32:07,384 INFO: Pulled Message(inst_name='cattle-78up')
12:32:08,229 INFO: Saved Message(inst_name='cattle-78up') into database

unblocking: concurrent work

unblocking: concurrent work
12:32:02,486 INFO: Pulled Message(inst_name='cattle-3rer')
12:32:03,143 INFO: Saved Message(inst_name='cattle-3rer') into database
12:32:03,154 INFO: Restarted cattle-3rer.example.net
12:32:03,154 INFO: Pulled Message(inst_name='cattle-caqp')
12:32:03,523 INFO: Saved Message(inst_name='cattle-caqp') into database
12:32:03,723 INFO: Restarted cattle-caqp.example.net
12:32:03,723 INFO: Pulled Message(inst_name='cattle-yicw')
12:32:04,486 INFO: Saved Message(inst_name='cattle-yicw') into database
12:32:05,419 INFO: Restarted cattle-yicw.example.net
12:32:05,419 INFO: Pulled Message(inst_name='cattle-aj80')
12:32:05,546 INFO: Saved Message(inst_name='cattle-aj80') into database
12:32:06,249 INFO: Restarted cattle-aj80.example.net
12:32:06,249 INFO: Pulled Message(inst_name='cattle-qgh6')
12:32:07,137 INFO: Saved Message(inst_name='cattle-qgh6') into database
12:32:07,384 INFO: Restarted cattle-qgh6.example.net
12:32:07,384 INFO: Pulled Message(inst_name='cattle-78up')
12:32:08,229 INFO: Saved Message(inst_name='cattle-78up') into database

We can see that although it doesn't block the event loop, await save(msg) blocks await
restart_host(msg), which blocks the consumption of future messages. There’s a clear order
here.

async def restart_host(msg):
 ...

async def save(msg):
 ...

async def consume(queue):
 while True:
 msg = await queue.get()
 logging.info(f'Pulled {msg}')

 await save(msg)
 await restart_host(msg)

unblocking: concurrent work
But maybe you want to your work to happen serially. You may not _want_ to have concurrency
for some asynchronous tasks 

These two tasks don't necessarily need to depend on one another – completely side-stepping
the potential concern/complexity of "should we restart a host if we fail to add the message to
the database".

async def restart_host(msg):
 ...

async def save(msg):
 ...

async def consume(queue):
 while True:
 msg = await queue.get()
 logging.info(f'Pulled {msg}')

 await save(msg)
 last_restart = await last_restart_date(msg)
 if today - last_restart > max_days:
 await restart_host(msg)

block when needed
Maybe you restart hosts that have an uptime of more than 7 days. Or maybe you should check
the balance of an account before you debit it. Needing code to be serial, to have steps or
dependencies, it doesn't mean that you can't be asynchronous. The await last_restart_date
will yield to the loop, but it doesn't mean that restart_host will be the next thing that the loop
executes. It just allows other things to happen outside of this coroutine.

async def handle_message(msg):
 await save(msg)
 last_restart = await last_restart_date(msg)
 if today - last_restart > max_days:
 asyncio.create_task(restart_host(msg))

async def consume(queue):
 while True:
 msg = await queue.get()
 logging.info(f'Pulled {msg}')

 asyncio.create_task(handle_message(msg))

block when needed
I’ll just put all this message-related logic in a separate coroutine function, so we don’t have to
block the consumption of messages….

async def handle_message(msg):
 asyncio.create_task(save(msg))
 last_restart = await last_restart_date(msg)
 if today - last_restart > max_days:
 asyncio.create_task(restart_host(msg))

async def consume(queue):
 while True:
 msg = await queue.get()
 logging.info(f'Pulled {msg}')

 asyncio.create_task(handle_message(msg))

block when needed
Saving a message shouldn’t block a restart of a host if needed, so we’ll return that to being a
task.

async def handle_message(msg):
 asyncio.create_task(save(msg))
 asyncio.create_task(restart_host(msg))

async def consume(queue):
 while True:
 msg = await queue.get()
 logging.info(f'Pulled {msg}')

 asyncio.create_task(handle_message(msg))

block when needed
For simplicity, pretend I moved this checking of last restart date logic out of the handle
message and into the restart host function.

adding concurrency:
finalization tasks

We've pulled a message from the queue, and fanned out work based off of that message.

Now we need to perform any finalizing work on that message;

def cleanup(msg):
 msg.acked = True
 logging.info(f'Done. Acked {msg}')

unblocking: finalization tasks
for example, acknowledging the message so it isn't re-delivered.

def cleanup(msg):
 msg.acked = True
 logging.info(f'Done. Acked {msg}')

async def handle_message(msg):
 asyncio.create_task(save(msg))
 asyncio.create_task(restart_host(msg))

unblocking: finalization tasks
We currently have two separate tasks, `save` and `restart_host`, and we want to make sure
both are done before the message is cleaned up.

def cleanup(msg):
 msg.acked = True
 logging.info(f'Done. Acked {msg}')

async def handle_message(msg):
 await save(msg)
 await restart_host(msg)
 await cleanup(msg)

unblocking: finalization tasks
We could go back to the sequential `await`s since that’s a very direct way to manipulate the
ordering.

def cleanup(msg, fut):
 msg.acked = True
 logging.info(f'Done. Acked {msg}')

async def handle_message(msg):
 g_future = asyncio.gather(save(msg), restart_host(msg))

 callback = functools.partial(cleanup, msg)
 g_future.add_done_callback(callback)
 await g_future

unblocking: finalization tasks
But we can also use callbacks on a completed task. What we therefore want is to somehow
have a task that wraps around the two tasks of `save` and `restart_host`, since we have to wait
for both to finish before cleaning up can happen.

We can make use of asyncio.gather, which returns a future-like object, to which we can attach
the callback of “cleanup” via `add_done_callback`.

We can now just await that future in order to kick off the `save` and `restart_host` coroutines.
And - obviously - the callback of “cleanup” will be called once those two are done.

13:15:31,250 INFO: Pulled Message(inst_name='cattle-zpsk')
13:15:31,286 INFO: Restarted cattle-zpsk.example.net
13:15:31,347 INFO: Pulled Message(inst_name='cattle-998c')
13:15:31,486 INFO: Saved Message(inst_name='cattle-zpsk') into database
13:15:31,486 INFO: Done. Acked Message(inst_name='cattle-zpsk')
13:15:31,811 INFO: Pulled Message(inst_name='cattle-j9bu')
13:15:31,863 INFO: Saved Message(inst_name='cattle-998c') into database
13:15:31,903 INFO: Pulled Message(inst_name='cattle-vk5l')
13:15:32,149 INFO: Pulled Message(inst_name='cattle-1lf2')
13:15:32,239 INFO: Restarted cattle-vk5l.example.net
13:15:32,245 INFO: Restarted cattle-998c.example.net
13:15:32,245 INFO: Done. Acked Message(inst_name='cattle-998c')
13:15:32,267 INFO: Saved Message(inst_name='cattle-j9bu') into database
13:15:32,478 INFO: Pulled Message(inst_name='cattle-mflk')
13:15:32,481 INFO: Restarted cattle-j9bu.example.net
13:15:32,482 INFO: Done. Acked Message(inst_name='cattle-j9bu')
13:15:32,505 INFO: Pulled Message(inst_name='cattle-t7tv')

unblocking: finalization tasks

unblocking: finalization tasks
13:15:31,250 INFO: Pulled Message(inst_name='cattle-zpsk')
13:15:31,286 INFO: Restarted cattle-zpsk.example.net
13:15:31,347 INFO: Pulled Message(inst_name='cattle-998c')
13:15:31,486 INFO: Saved Message(inst_name='cattle-zpsk') into database
13:15:31,486 INFO: Done. Acked Message(inst_name='cattle-zpsk')
13:15:31,811 INFO: Pulled Message(inst_name='cattle-j9bu')
13:15:31,863 INFO: Saved Message(inst_name='cattle-998c') into database
13:15:31,903 INFO: Pulled Message(inst_name='cattle-vk5l')
13:15:32,149 INFO: Pulled Message(inst_name='cattle-1lf2')
13:15:32,239 INFO: Restarted cattle-vk5l.example.net
13:15:32,245 INFO: Restarted cattle-998c.example.net
13:15:32,245 INFO: Done. Acked Message(inst_name='cattle-998c')
13:15:32,267 INFO: Saved Message(inst_name='cattle-j9bu') into database
13:15:32,478 INFO: Pulled Message(inst_name='cattle-mflk')
13:15:32,481 INFO: Restarted cattle-j9bu.example.net
13:15:32,482 INFO: Done. Acked Message(inst_name='cattle-j9bu')
13:15:32,505 INFO: Pulled Message(inst_name='cattle-t7tv')

So once's both save coroutine and restart coroutine are complete, cleanup will be called that
signifies a message is completely done:

unblocking: finalization tasks
13:15:31,250 INFO: Pulled Message(inst_name='cattle-zpsk')
13:15:31,286 INFO: Restarted cattle-zpsk.example.net
13:15:31,347 INFO: Pulled Message(inst_name='cattle-998c')
13:15:31,486 INFO: Saved Message(inst_name='cattle-zpsk') into database
13:15:31,486 INFO: Done. Acked Message(inst_name='cattle-zpsk')
13:15:31,811 INFO: Pulled Message(inst_name='cattle-j9bu')
13:15:31,863 INFO: Saved Message(inst_name='cattle-998c') into database
13:15:31,903 INFO: Pulled Message(inst_name='cattle-vk5l')
13:15:32,149 INFO: Pulled Message(inst_name='cattle-1lf2')
13:15:32,239 INFO: Restarted cattle-vk5l.example.net
13:15:32,245 INFO: Restarted cattle-998c.example.net
13:15:32,245 INFO: Done. Acked Message(inst_name='cattle-998c')
13:15:32,267 INFO: Saved Message(inst_name='cattle-j9bu') into database
13:15:32,478 INFO: Pulled Message(inst_name='cattle-mflk')
13:15:32,481 INFO: Restarted cattle-j9bu.example.net
13:15:32,482 INFO: Done. Acked Message(inst_name='cattle-j9bu')
13:15:32,505 INFO: Pulled Message(inst_name='cattle-t7tv')

And we’ve still maintained appropriate concurrency.

def cleanup(msg, fut):
 msg.acked = True
 logging.info(f'Done. Acked {msg}')

async def handle_message(msg):
 g_future = asyncio.gather(save(msg), restart_host(msg))

 callback = functools.partial(cleanup, msg)
 g_future.add_done_callback(callback)
 await g_future

unblocking: finalization tasks
I personally have an allergy to callbacks.

async def cleanup(msg):
 await ack_message(msg)
 msg.acked = True
 logging.info(f'Done. Acked {msg}')

async def handle_message(msg):
 await asyncio.gather(save(msg), restart_host(msg))
 await cleanup(msg)

unblocking: finalization tasks
As well, perhaps we need cleanup to be non-blocking.

Another approach could be just to await it since the order of operations does matter.

adding concurrency:
tasks monitoring other tasks

Now, much like Google's Pub/Sub, let's say that the publisher will redeliver a message after 10
seconds if it has not been acknowledged. We are able to extend that "timeout" period or
acknowledgement deadline for a message.

In order to do that, we now have to have a coroutine that, in essence, monitors all the other
worker tasks.

While our tasks are working to restart hosts and save the pulled message, we’ll have another
coroutine will extend the message acknowledgement deadline; then once they're done, it
should stop extending and cleanup the message.

async def extend(msg, event):
 while not event.is_set():
 msg.extend_deadline += 3
 logging.info(f'Extended deadline 3s {msg}')
 # want to sleep for less than the deadline amount
 await asyncio.sleep(2)
 else:
 await cleanup(msg)

unblocking: tasks monitoring other tasks
One approach is to make use of asyncio.Event[1] primatives. An event instance essentially
just provides is with a boolean flag. Our `extend` coroutine will essentially loop while that flag is
not yet set, continually extending the message’s deadline until we’re done.

[1] https://docs.python.org/3/library/asyncio-sync.html#event

async def extend(msg, event):
 while not event.is_set():
 msg.extend_deadline += 3
 logging.info(f'Extended deadline 3s {msg}')
 # want to sleep for less than the deadline amount
 await asyncio.sleep(2)
 else:
 await cleanup(msg)

async def handle_message(msg):
 event = asyncio.Event()
 asyncio.create_task(extend(msg, event))
 await asyncio.gather(save(msg), restart_host(msg))
 event.set()

unblocking: tasks monitoring other tasks
And then we update our `handle_message` function: we’ll create an event instance to give to
the `extend` coroutine, and create a task out of it, basically “fire and forget” the task. We still
await the `asyncio.gather`, and then once we’re done, we `set` the event to cue the `extend`
function to start the cleanup process.

19:04:29,602 INFO: Pulled Message(inst_name='cattle-g7hy')
19:04:29,603 INFO: Extended deadline 3s Message(inst_name='cattle-g7hy')
19:04:29,692 INFO: Saved Message(inst_name='cattle-g7hy') into database
19:04:30,439 INFO: Pulled Message(inst_name='cattle-wv21')
19:04:30,440 INFO: Extended deadline 3s Message(inst_name='cattle-wv21')
19:04:30,605 INFO: Restarted cattle-g7hy.example.net
19:04:31,100 INFO: Saved Message(inst_name='cattle-wv21') into database
19:04:31,203 INFO: Pulled Message(inst_name='cattle-40w2')
19:04:31,203 INFO: Extended deadline 3s Message(inst_name='cattle-40w2')
19:04:31,350 INFO: Pulled Message(inst_name='cattle-ouqk')
19:04:31,350 INFO: Extended deadline 3s Message(inst_name='cattle-ouqk')
19:04:31,445 INFO: Saved Message(inst_name='cattle-40w2') into database
19:04:31,775 INFO: Done. Acked Message(inst_name='cattle-g7hy')
19:04:31,919 INFO: Saved Message(inst_name='cattle-ouqk') into database
19:04:32,184 INFO: Pulled Message(inst_name='cattle-oqxz')
19:04:32,184 INFO: Extended deadline 3s Message(inst_name='cattle-oqxz')
19:04:32,207 INFO: Restarted cattle-40w2.example.net

unblocking: tasks monitoring other tasks
Running this,

unblocking: tasks monitoring other tasks
19:04:29,602 INFO: Pulled Message(inst_name='cattle-g7hy')
19:04:29,603 INFO: Extended deadline 3s Message(inst_name='cattle-g7hy')
19:04:29,692 INFO: Saved Message(inst_name='cattle-g7hy') into database
19:04:30,439 INFO: Pulled Message(inst_name='cattle-wv21')
19:04:30,440 INFO: Extended deadline 3s Message(inst_name='cattle-wv21')
19:04:30,605 INFO: Restarted cattle-g7hy.example.net
19:04:31,100 INFO: Saved Message(inst_name='cattle-wv21') into database
19:04:31,203 INFO: Pulled Message(inst_name='cattle-40w2')
19:04:31,203 INFO: Extended deadline 3s Message(inst_name='cattle-40w2')
19:04:31,350 INFO: Pulled Message(inst_name='cattle-ouqk')
19:04:31,350 INFO: Extended deadline 3s Message(inst_name='cattle-ouqk')
19:04:31,445 INFO: Saved Message(inst_name='cattle-40w2') into database
19:04:31,775 INFO: Done. Acked Message(inst_name='cattle-g7hy')
19:04:31,919 INFO: Saved Message(inst_name='cattle-ouqk') into database
19:04:32,184 INFO: Pulled Message(inst_name='cattle-oqxz')
19:04:32,184 INFO: Extended deadline 3s Message(inst_name='cattle-oqxz')
19:04:32,207 INFO: Restarted cattle-40w2.example.net

we can see we're extending while work continues, and cleaning up once done

async def extend(msg, event):
 while not event.is_set():
 msg.extend_deadline += 3
 logging.info(f'Extended deadline 3s {msg}')
 # want to sleep for less than the deadline amount
 await asyncio.sleep(2)
 else:
 await cleanup(msg)

async def handle_message(msg):
 event = asyncio.Event()
 asyncio.create_task(extend(msg, event))
 await asyncio.gather(save(msg), restart_host(msg))
 event.set()

unblocking: tasks monitoring other tasks
If you love events, you could adapt this a little bit…

async def cleanup(msg, event):
 await event.wait()
 await ack_message(msg)
 msg.acked = True
 logging.info(f'Done. Acked {msg}')

async def extend(msg, event):
 while not event.is_set():
 logging.info(f'Extended deadline 3s {msg}')
 await asyncio.sleep(2)

async def handle_message(msg):
 event = asyncio.Event()
 asyncio.create_task(extend(msg, event))
 asyncio.create_task(cleanup(msg, event))
 await asyncio.gather(save(msg), restart_host(msg))
 event.set()

unblocking: tasks monitoring other tasks
… to make use of the `event.wait` coroutine.

unblocking: tasks monitoring other tasks
async def cleanup(msg, event):
 await event.wait()
 await ack_message(msg)
 msg.acked = True
 logging.info(f'Done. Acked {msg}')

async def extend(msg, event):
 while not event.is_set():
 logging.info(f'Extended deadline 3s {msg}')
 await asyncio.sleep(2)

async def handle_message(msg):
 event = asyncio.Event()
 asyncio.create_task(extend(msg, event))
 asyncio.create_task(cleanup(msg, event))
 await asyncio.gather(save(msg), restart_host(msg))
 event.set()

Cleanup would be its own task again that you’d “fire and forget” along with `extend`, making it
a bit more logical to read, so cleanup isn’t called within extend, but from the same place that
message-related tasks are controlled.

• Asynchronous != concurrent
• Serial != blocking

adding concurrency: tl;dr

asyncio is pretty easy to use, but being easy to use doesn't automatically mean you're using it
correctly. You can't just throw around async and await keywords around blocking code. It's a
shift in a mental paradigm. Both with needing to think of what work can be farmed out and let
it do its thing, what dependencies there are and where your code might still need to be
sequential.

But having steps within your code, having "first A, then B, then C" may seem like it's blocking
when it's not. Sequential code can still be asynchronous. I might have to call customer service
for something, and wait to be taken off hold to talk to them, but while I wait, I can put the
phone on speaker and pet my super needy cat. I might be single-threaded as a person, but I
can multi-task like CPUs.

graceful shutdowns

Earlier, we added a try/except/finally around our main event loop code. Often though, you'll
want your service to gracefully shutdown if it receives a signal of some sort, e.g. clean up
open database connections, stop consuming messages, finish responding to current requests
while not accepting new requests, etc.

graceful shutdowns
responding to signals

So, if we happen to restart an instance of our own chaos monkey-like service, we should clean
up the "mess" we've made before exiting out.

if __name__ == '__main__':
 queue = asyncio.Queue()
 publisher_coro = handle_exception(publish(queue))
 consumer_coro = handle_exception(consume(queue))
 loop = asyncio.get_event_loop()
 try:
 loop.create_task(publisher_coro)
 loop.create_task(consumer_coro)
 loop.run_forever()
 except KeyboardInterrupt:
 logging.info('Process interrupted')
 finally:
 logging.info('Cleaning up')
 loop.close()

graceful shutdown: responding to signals
We've been catching the commonly-known…

graceful shutdown: responding to signals
if __name__ == '__main__':
 queue = asyncio.Queue()
 publisher_coro = handle_exception(publish(queue))
 consumer_coro = handle_exception(consume(queue))
 loop = asyncio.get_event_loop()
 try:
 loop.create_task(publisher_coro)
 loop.create_task(consumer_coro)
 loop.run_forever()
 except KeyboardInterrupt: # <-- a.k.a. SIGINT
 logging.info('Process interrupted')
 finally:
 logging.info('Cleaning up')
 loop.close()

…KeyboardInterrupt exception like many other tutorials and libraries.

$ python mandrill/mayhem.py
$ pkill -TERM -f "python mandrill/mayhem.py"

19:08:25,553 INFO: Pulled Message(inst_name='cattle-npww')
19:08:25,554 INFO: Extended deadline 3s Message(inst_name='cattle-npww')
19:08:25,655 INFO: Pulled Message(inst_name='cattle-rm7n')
19:08:25,655 INFO: Extended deadline 3s Message(inst_name='cattle-rm7n')
19:08:25,790 INFO: Saved Message(inst_name='cattle-rm7n') into database
19:08:25,831 INFO: Saved Message(inst_name='cattle-npww') into database
[1] 78851 terminated python mandrill/mayhem.py

graceful shutdown: responding to signals
So if we send our program a signal other than SIGINT, like SIGTERM, We see that we don't
reach the finally clause…

graceful shutdown: responding to signals
if __name__ == '__main__':
 queue = asyncio.Queue()
 publisher_coro = handle_exception(publish(queue))
 consumer_coro = handle_exception(consume(queue))
 loop = asyncio.get_event_loop()
 try:
 loop.create_task(publisher_coro)
 loop.create_task(consumer_coro)
 loop.run_forever()
 except KeyboardInterrupt:
 logging.info('Process interrupted')
 finally:
 logging.info('Cleaning up')
 loop.close()

 where we log that we're cleaning up and close the loop.

It should also be pointed out that – even if we were to only ever expect a KeyboardInterrupt /
SIGINT signal –

graceful shutdown: responding to signals
if __name__ == '__main__':
 queue = asyncio.Queue()
 publisher_coro = handle_exception(publish(queue))
 consumer_coro = handle_exception(consume(queue))
 loop = asyncio.get_event_loop() # <-- could happen here or earlier
 try:
 loop.create_task(publisher_coro)
 loop.create_task(consumer_coro)
 loop.run_forever()
 except KeyboardInterrupt:
 logging.info('Process interrupted') # <-- could happen here
 finally:
 logging.info('Cleaning up') # <-- could happen here
 loop.close() # <-- could happen here

it could happen outside the catching of the exception, potentially causing the service to end
up in an incomplete or otherwise unknown state.

graceful shutdowns
signal handler

So, instead of catching KeyboardInterrupt, let's attach a signal handler to the loop.

async def shutdown(signal, loop):
 logging.info(f'Received exit signal {signal.name}...')
 logging.info('Closing database connections')
 logging.info('Nacking outstanding messages')
 tasks = [t for t in asyncio.all_tasks() if t is not
 asyncio.current_task()]

 [task.cancel() for task in tasks]

 logging.info(f'Cancelling {len(tasks)} outstanding tasks')
 await asyncio.gather(*tasks)
 loop.stop()
 logging.info('Shutdown complete.')

graceful shutdown: signal handler
We’ll define a shutdown coroutine that will be responsible for doing all of our necessary
shutdown tasks.

graceful shutdown: signal handler
async def shutdown(signal, loop):
 logging.info(f'Received exit signal {signal.name}...')
 logging.info('Closing database connections')
 logging.info('Nacking outstanding messages')
 tasks = [t for t in asyncio.all_tasks() if t is not
 asyncio.current_task()]

 [task.cancel() for task in tasks]

 logging.info(f'Cancelling {len(tasks)} outstanding tasks')
 await asyncio.gather(*tasks)
 loop.stop()
 logging.info('Shutdown complete.')

Here I'm just closing that simulated database connections, returning messages to pub/sub as
not acknowledged (so they can be redelivered and not dropped), …

graceful shutdown: signal handler
async def shutdown(signal, loop):
 logging.info(f'Received exit signal {signal.name}...')
 logging.info('Closing database connections')
 logging.info('Nacking outstanding messages')
 tasks = [t for t in asyncio.all_tasks() if t is not
 asyncio.current_task()]

 [task.cancel() for task in tasks]

 logging.info(f'Cancelling {len(tasks)} outstanding tasks')
 await asyncio.gather(*tasks)
 loop.stop()
 logging.info('Shutdown complete.')

…and then collecting all outstanding tasks - except for the shutdown task, itself - and
cancelling them.

We don't necessarily need to cancel pending tasks; we could just collect and allow them to
finish. We may also want to take this opportunity to flush any collected metrics so they're not
lost.

graceful shutdown: signal handler
async def shutdown(signal, loop):
 logging.info(f'Received exit signal {signal.name}...')
 logging.info('Closing database connections')
 logging.info('Nacking outstanding messages')
 tasks = [t for t in asyncio.all_tasks() if t is not
 asyncio.current_task()]

 [task.cancel() for task in tasks]

 logging.info(f'Cancelling {len(tasks)} outstanding tasks')
 await asyncio.gather(*tasks)
 loop.stop()
 logging.info('Shutdown complete.')

Since we have `loop.stop` here,

async def handle_exception(coro, loop):
 try:
 await coro
 except Exception as e:
 logging.error(f'Caught exception: {e}')
 loop.stop()

graceful shutdown: signal handler
We should remove it…

async def handle_exception(coro):
 try:
 await coro
 except Exception as e:
 logging.error(f'Caught exception: {e}')
 # loop.stop() # taken care of in shutdown()

graceful shutdown: signal handler
…from our handle_exception coroutine that we defined earlier, and now we no longer need to
pass it the `loop` argument.

if __name__ == '__main__':
 queue = asyncio.Queue()
 publisher_coro = handle_exception(publish(queue))
 consumer_coro = handle_exception(consume(queue))
 loop = asyncio.get_event_loop()
 try:
 loop.create_task(publisher_coro)
 loop.create_task(consumer_coro)
 loop.run_forever()
 except KeyboardInterrupt:
 logging.info('Process interrupted')
 finally:
 logging.info('Cleaning up')
 loop.close()

graceful shutdown: signal handler
We now need to update our main section.

if __name__ == '__main__':
 loop = asyncio.get_event_loop()
 signals = (signal.SIGHUP, signal.SIGTERM, signal.SIGINT)
 for s in signals:
 loop.add_signal_handler(
 s, lambda s=s: asyncio.create_task(shutdown(s, loop)))
 queue = asyncio.Queue()
 publisher_coro = handle_exception(publish(queue), loop)
 consumer_coro = handle_exception(consume(queue), loop)
 try:
 loop.create_task(publisher_coro)
 loop.create_task(consumer_coro)
 loop.run_forever()
 finally:
 logging.info('Cleaning up')
 loop.close()

graceful shutdown: signal handler
The first thing we do is setup our loop, and add our signal handler….

graceful shutdown: signal handler
if __name__ == '__main__':
 loop = asyncio.get_event_loop()
 signals = (signal.SIGHUP, signal.SIGTERM, signal.SIGINT)
 for s in signals:
 loop.add_signal_handler(
 s, lambda s=s: asyncio.create_task(shutdown(s, loop)))
 queue = asyncio.Queue()
 publisher_coro = handle_exception(publish(queue), loop)
 consumer_coro = handle_exception(consume(queue), loop)
 try:
 loop.create_task(publisher_coro)
 loop.create_task(consumer_coro)
 loop.run_forever()
 finally:
 logging.info('Cleaning up')
 loop.close()

I also removed the KeyboardInterrupt catch since that's now taken care of within the signal
handling.

$ python mandrill/mayhem.py
or -HUP or -INT
$ pkill -TERM -f "python mandrill/mayhem.py"

19:11:25,321 INFO: Pulled Message(inst_name='cattle-lrnm')
19:11:25,321 INFO: Extended deadline 3s Message(inst_name='cattle-lrnm')
19:11:25,700 INFO: Pulled Message(inst_name='cattle-m0f6')
19:11:25,700 INFO: Extended deadline 3s Message(inst_name='cattle-m0f6')
19:11:25,740 INFO: Saved Message(inst_name='cattle-m0f6') into database
19:11:25,840 INFO: Saved Message(inst_name='cattle-lrnm') into database
19:11:26,143 INFO: Received exit signal SIGTERM...
19:11:26,143 INFO: Closing database connections
19:11:26,144 INFO: Cancelling outstanding tasks
19:11:26,144 ERROR: Caught exception
19:11:26,144 ERROR: Caught exception
19:11:26,144 INFO: Cleaning up

graceful shutdown: signal handler
Running this again

graceful shutdown: signal handler
$ python mandrill/mayhem.py
or -HUP or -INT
$ pkill -TERM -f "python mandrill/mayhem.py"

19:11:25,321 INFO: Pulled Message(inst_name='cattle-lrnm')
19:11:25,321 INFO: Extended deadline 3s Message(inst_name='cattle-lrnm')
19:11:25,700 INFO: Pulled Message(inst_name='cattle-m0f6')
19:11:25,700 INFO: Extended deadline 3s Message(inst_name='cattle-m0f6')
19:11:25,740 INFO: Saved Message(inst_name='cattle-m0f6') into database
19:11:25,840 INFO: Saved Message(inst_name='cattle-lrnm') into database
19:11:26,143 INFO: Received exit signal SIGTERM...
19:11:26,143 INFO: Closing database connections
19:11:26,144 INFO: Cancelling outstanding tasks
19:11:26,144 ERROR: Caught exception
19:11:26,144 ERROR: Caught exception
19:11:26,144 INFO: Cleaning up

We do get into that “finally” clause.

graceful shutdown: signal handler
$ python mandrill/mayhem.py
or -HUP or -INT
$ pkill -TERM -f "python mandrill/mayhem.py"

19:11:25,321 INFO: Pulled Message(inst_name='cattle-lrnm')
19:11:25,321 INFO: Extended deadline 3s Message(inst_name='cattle-lrnm')
19:11:25,700 INFO: Pulled Message(inst_name='cattle-m0f6')
19:11:25,700 INFO: Extended deadline 3s Message(inst_name='cattle-m0f6')
19:11:25,740 INFO: Saved Message(inst_name='cattle-m0f6') into database
19:11:25,840 INFO: Saved Message(inst_name='cattle-lrnm') into database
19:11:26,143 INFO: Received exit signal SIGTERM...
19:11:26,143 INFO: Closing database connections
19:11:26,144 INFO: Cancelling outstanding tasks
19:11:26,144 ERROR: Caught exception
19:11:26,144 ERROR: Caught exception
19:11:26,144 INFO: Cleaning up

But it also looks like we hit "Caught exception" twice.

This is because awaiting on cancelled tasks will raise asyncio.CancelledError, which is
expected.

We can handle that better within our handle_exception coroutine as well:

async def handle_exception(coro):
 try:
 await coro
 except Exception as e:
 logging.error(f'Caught exception: {e}')

graceful shutdown: signal handler
So within this coroutine,

async def handle_exception(coro):
 try:
 await coro
 except asyncio.CancelledError:
 logging.info('Coroutine cancelled')
 except Exception as e:
 logging.error(f'Caught exception: {e}')

graceful shutdown: signal handler
We add a catch for the CancelledError exception, so we can differentiate it from others.

$ python mandrill/mayhem.py
$ pkill -INT -f "python mandrill/mayhem.py"

19:22:10,47 INFO: Pulled Message(inst_name='cattle-1zsx')
19:22:10,47 INFO: Extended deadline 3s Message(inst_name='cattle-1zsx')
^C19:22:10,541 INFO: Received exit signal SIGINT...
19:22:10,541 INFO: Closing database connections
19:22:10,541 INFO: Cancelling outstanding tasks
19:22:10,541 INFO: Coroutine cancelled
19:22:10,541 INFO: Coroutine cancelled
19:22:10,541 INFO: Cleaning up

graceful shutdown: signal handling
So now we see our coroutines are cancelled

graceful shutdown: signal handling
$ python mandrill/mayhem.py
$ pkill -INT -f "python mandrill/mayhem.py"

19:22:10,47 INFO: Pulled Message(inst_name='cattle-1zsx')
19:22:10,47 INFO: Extended deadline 3s Message(inst_name='cattle-1zsx')
^C19:22:10,541 INFO: Received exit signal SIGINT...
19:22:10,541 INFO: Closing database connections
19:22:10,541 INFO: Cancelling outstanding tasks
19:22:10,541 INFO: Coroutine cancelled
19:22:10,541 INFO: Coroutine cancelled
19:22:10,541 INFO: Cleaning up

 and not some random exception.

graceful shutdowns
which signals to care about

You now might be wondering which signals to react to.

graceful shutdown: which signals to care about

Hard Exit Graceful Reload/Restart

nginx TERM, INT QUIT HUP

Apache TERM WINCH HUP

uWSGI INT, QUIT HUP, TERM

Gunicorn INT, QUIT TERM HUP

Docker KILL TERM

And apparently there's no standard.

Basically, you should be aware of how you're running your service, and handle accordingly. It
seems like it could get messy with conflicting signals, and when adding docker to the mix.

graceful shutdowns
not-so-graceful asyncio.shield

Another misleading API in asyncio is asyncio.shield [1]. The docs say it's a means to shield a
future from cancellation. But if you have a coroutine that must not be cancelled during
shutdown, asyncio.shield will not help you.

This is because the task that asyncio.shield creates gets included in asyncio.all_tasks, and
therefore receives the cancellation signal like the rest of the tasks.

[1] https://docs.python.org/3/library/asyncio-task.html#asyncio.shield

async def cant_stop_me():
 logging.info('Hold on...')
 await asyncio.sleep(60)
 logging.info('Done!')

ungraceful shutdown: asyncio.shield
To help illustrate real quick, let's have a simple async function with a long sleep that logs a line
saying “Done”.

async def cant_stop_me():
 ...

if __name__ == '__main__':
 loop = asyncio.get_event_loop()
 signals = (signal.SIGHUP, signal.SIGTERM, signal.SIGINT)
 for s in signals:
 loop.add_signal_handler(
 s, lambda s=s: asyncio.create_task(shutdown(s, loop)))

 shielded_coro = asyncio.shield(cant_stop_me())
 try:
 loop.run_until_complete(shielded_coro)
 finally:
 logging.info('Cleaning up')
 loop.close()

ungraceful shutdown: asyncio.shield
 that we want to shield from cancellation

ungraceful shutdown: asyncio.shield
async def cant_stop_me():
 ...

if __name__ == '__main__':
 loop = asyncio.get_event_loop()
 signals = (signal.SIGHUP, signal.SIGTERM, signal.SIGINT)
 for s in signals:
 loop.add_signal_handler(
 s, lambda s=s: asyncio.create_task(shutdown(s, loop)))

 shielded_coro = asyncio.shield(cant_stop_me())
 try:
 loop.run_until_complete(shielded_coro)
 finally:
 logging.info('Cleaning up')
 loop.close()

With asyncio.shield

13:24:20,105 INFO: Hold on...
^C13:24:21,156 INFO: Received exit signal SIGINT...
13:24:21,156 INFO: Cancelling 2 outstanding tasks
13:24:21,156 INFO: Coroutine cancelled
13:24:21,157 INFO: Cleaning up
Traceback (most recent call last):
 File "examples/shield_test.py", line 62, in
 loop.run_until_complete(shielded_coro)
 File "/Users/lynn/.pyenv/versions/3.7.0/lib/python3.7/asyncio/
base_events.py", line 568, in run_until_complete
 return future.result()
concurrent.futures._base.CancelledError

ungraceful shutdown: asyncio.shield
Running this and cancelling it after a second, we see that we don't get to the "Done" log line,
that it's immediately cancelled.

 
And to be honest, I couldn’t get shield to work under any circumstances…

• try/except/finally isn’t enough
• Define desired shutdown behavior
• Use signal handlers
• Listen for appropriate signals

graceful shutdown: tl;dr
We don't have any nursuries in asyncio core to clean ourselves up; it's up to us to be
responsible and close up the connections and files we opened, respond to outstanding
requests, basically leave things how we found them.

Doing our cleanup in a finally clause isn't enough, though, since a signal could be sent outside
of the try/except clause.

So as we construct the loop, we should tell how it should be deconstructed as soon as
possible in the program. This ensures that "all our bases are covered", that we're not leaving
artifacts anywhere.

And finally, we also need to be aware of when our program should shutdown, which is closely
tied to how we run our program. If it's a manually ran script, then SIGINT is fine. But if it's
within a daemonized Docker container, then SIGTERM is more appropriate.

exception handling

You may have noticed that, while we're catching exceptions on the top level, we're not paying
any mind to exceptions that could be raised from within coroutines like restart_host, save, etc.

async def restart_host(msg):
 # faked error
 rand_int = random.randrange(1, 3)
 if rand_int == 2:
 raise Exception('Could not restart host')
 await asyncio.sleep(random.randrange(1,3))
 logging.info(f'Restarted {msg.hostname}')

exception handling
To show you what I mean, let's fake an error where we can't restart a host.

Running it, we see:

15:11:04,967 INFO: Pulled Message(inst_name='cattle-bgog')
15:11:04,967 INFO: Extended deadline 3s Message(inst_name='cattle-bgog')
15:11:04,967 ERROR: Task exception was never retrieved
future: <Task finished coro=<handle_message() done, defined at mayhem_15.py:
132> exception=Exception('Could not restart cattle-bgog.example.net')>
Traceback (most recent call last):
 File "mayhem_15.py", line 143, in handle_message
 save(msg), restart_host(msg) #, return_exceptions=True
 File "mayhem_15.py", line 77, in restart_host
 raise Exception(f'Could not restart {msg.hostname}')
Exception: Could not restart cattle-bgog.example.net
15:11:05,364 INFO: Saved Message(inst_name='cattle-bgog') into database
15:11:06,973 INFO: Extended deadline 3s Message(inst_name='cattle-bgog')
15:11:08,975 INFO: Extended deadline 3s Message(inst_name='cattle-bgog')
15:11:10,976 INFO: Extended deadline 3s Message(inst_name='cattle-bgog')
15:11:12,981 INFO: Extended deadline 3s Message(inst_name='cattle-bgog')

exception handling
We see that one of the hosts could not be restarted…

exception handling
15:11:04,967 INFO: Pulled Message(inst_name='cattle-bgog')
15:11:04,967 INFO: Extended deadline 3s Message(inst_name='cattle-bgog')
15:11:04,967 ERROR: Task exception was never retrieved
future: <Task finished coro=<handle_message() done, defined at mayhem_15.py:
132> exception=Exception('Could not restart cattle-bgog.example.net')>
Traceback (most recent call last):
 File "mayhem_15.py", line 143, in handle_message
 save(msg), restart_host(msg) #, return_exceptions=True
 File "mayhem_15.py", line 77, in restart_host
 raise Exception(f'Could not restart {msg.hostname}')
Exception: Could not restart cattle-bgog.example.net
15:11:05,364 INFO: Saved Message(inst_name='cattle-bgog') into database
15:11:06,973 INFO: Extended deadline 3s Message(inst_name='cattle-bgog')
15:11:08,975 INFO: Extended deadline 3s Message(inst_name='cattle-bgog')
15:11:10,976 INFO: Extended deadline 3s Message(inst_name='cattle-bgog')
15:11:12,981 INFO: Extended deadline 3s Message(inst_name='cattle-bgog')

While the service doesn't crash and it did save the message in the database, it did not clean
up and ack the message. The extend on the message deadline will also keep spinning, so
we've essentially deadlocked on the message.

async def handle_message(msg):
 event = asyncio.Event()

 asyncio.create_task(extend(msg, event))
 asyncio.create_task(cleanup(msg, event))

 await asyncio.gather(save(msg), restart_host(msg))
 event.set()

exception handling
The simple thing to do is - within handle_message -

exception handling
async def handle_message(msg):
 event = asyncio.Event()

 asyncio.create_task(extend(msg, event))
 asyncio.create_task(cleanup(msg, event))

 await asyncio.gather(
 save(msg), restart_host(msg), return_exceptions=True)
 event.set()

 add return_exceptions=True to asyncio.gather, so rather than completely dropping an
exception, it's returned along with the successful results:

09:08:50,658 INFO: Pulled Message(inst_name='cattle-4f52')
09:08:50,659 INFO: Extended deadline 3s Message(inst_name='cattle-4f52')
09:08:51,025 INFO: Pulled Message(inst_name='cattle-orj0')
09:08:51,025 INFO: Extended deadline 3s Message(inst_name='cattle-orj0')
09:08:51,497 INFO: Pulled Message(inst_name='cattle-f4nw')
09:08:51,497 INFO: Extended deadline 3s Message(inst_name='cattle-f4nw')
09:08:51,626 INFO: Saved Message(inst_name='cattle-4f52') into database
09:08:51,706 INFO: Saved Message(inst_name='cattle-orj0') into database
09:08:51,723 INFO: Done. Acked Message(inst_name='cattle-4f52')
09:08:52,009 INFO: Saved Message(inst_name='cattle-f4nw') into database
09:08:52,409 INFO: Pulled Message(inst_name='cattle-dft2')
09:08:52,410 INFO: Extended deadline 3s Message(inst_name='cattle-dft2')
09:08:52,444 INFO: Saved Message(inst_name='cattle-dft2') into database
09:08:52,929 INFO: Done. Acked Message(inst_name='cattle-dft2')
09:08:52,930 INFO: Pulled Message(inst_name='cattle-ft4h')
09:08:52,930 INFO: Extended deadline 3s Message(inst_name='cattle-ft4h')
09:08:53,029 INFO: Extended deadline 3s Message(inst_name='cattle-orj0')

exception handling
So while we don’t see any tracebacks nor are we purpetually extending messages, we don’t
yet see where or when we have encountered errors. It’d be nice to see which tasks finish with
an error

def handle_results(results):
 for result in results:
 if isinstance(result, Exception):
 logging.error(f'Caught exc: {result}')

exception handling
We could add a callback via add_done_callback to the asyncio.gather future, but as I said, I'm
allergic. We can just process the results of the gathering of tasks afterwards….

def handle_results(results):
 for result in results:
 if isinstance(result, Exception):
 logging.error(f'Caught exc: {result}')

async def handle_message(msg):
 event = asyncio.Event()
 asyncio.create_task(extend(msg, event))
 asyncio.create_task(cleanup(msg, event))

 results = await asyncio.gather(
 save(msg), restart_host(msg), return_exceptions=True
)
 handle_results(results)
 event.set()

exception handling
…which for me, seems easier to understand what’s going on.

So here after the asyncio.gather returns,…

exception handling
def handle_results(results):
 for result in results:
 if isinstance(result, Exception):
 logging.error(f'Caught exc: {result}')

async def handle_message(msg):
 event = asyncio.Event()
 asyncio.create_task(extend(msg, event))
 asyncio.create_task(cleanup(msg, event))

 results = await asyncio.gather(
 save(msg), restart_host(msg), return_exceptions=True
)
 handle_results(results)
 event.set()

we can separate out the successful results from the errors.

09:27:48,143 INFO: Pulled Message(inst_name='cattle-gas8')
09:27:48,144 INFO: Extended deadline 3s Message(inst_name='cattle-gas8')
09:27:48,644 INFO: Pulled Message(inst_name='cattle-arpg')
09:27:48,645 INFO: Extended deadline 3s Message(inst_name='cattle-arpg')
09:27:48,880 INFO: Saved Message(inst_name='cattle-gas8') into database
09:27:48,880 ERROR: Caught exc: Could not restart cattle-gas8.example.net
09:27:49,385 INFO: Pulled Message(inst_name='cattle-4nl3')
09:27:49,385 INFO: Extended deadline 3s Message(inst_name='cattle-4nl3')
09:27:49,503 INFO: Saved Message(inst_name='cattle-arpg') into database
09:27:49,504 ERROR: Caught exc: Could not restart cattle-arpg.example.net
09:27:49,656 INFO: Pulled Message(inst_name='cattle-4713')
09:27:49,656 INFO: Extended deadline 3s Message(inst_name='cattle-4713')
09:27:49,734 INFO: Saved Message(inst_name='cattle-4nl3') into database
09:27:49,734 ERROR: Caught exc: Could not restart cattle-4nl3.example.net
09:27:49,747 INFO: Done. Acked Message(inst_name='cattle-gas8')

exception handling
Now running with this,

exception handling
09:27:48,143 INFO: Pulled Message(inst_name='cattle-gas8')
09:27:48,144 INFO: Extended deadline 3s Message(inst_name='cattle-gas8')
09:27:48,644 INFO: Pulled Message(inst_name='cattle-arpg')
09:27:48,645 INFO: Extended deadline 3s Message(inst_name='cattle-arpg')
09:27:48,880 INFO: Saved Message(inst_name='cattle-gas8') into database
09:27:48,880 ERROR: Caught exc: Could not restart cattle-gas8.example.net
09:27:49,385 INFO: Pulled Message(inst_name='cattle-4nl3')
09:27:49,385 INFO: Extended deadline 3s Message(inst_name='cattle-4nl3')
09:27:49,503 INFO: Saved Message(inst_name='cattle-arpg') into database
09:27:49,504 ERROR: Caught exc: Could not restart cattle-arpg.example.net
09:27:49,656 INFO: Pulled Message(inst_name='cattle-4713')
09:27:49,656 INFO: Extended deadline 3s Message(inst_name='cattle-4713')
09:27:49,734 INFO: Saved Message(inst_name='cattle-4nl3') into database
09:27:49,734 ERROR: Caught exc: Could not restart cattle-4nl3.example.net
09:27:49,747 INFO: Done. Acked Message(inst_name='cattle-gas8')

We indeed see errors logged.

exception handling
09:27:48,143 INFO: Pulled Message(inst_name='cattle-gas8')
09:27:48,144 INFO: Extended deadline 3s Message(inst_name='cattle-gas8')
09:27:48,644 INFO: Pulled Message(inst_name='cattle-arpg')
09:27:48,645 INFO: Extended deadline 3s Message(inst_name='cattle-arpg')
09:27:48,880 INFO: Saved Message(inst_name='cattle-gas8') into database
09:27:48,880 ERROR: Caught exc: Could not restart cattle-gas8.example.net
09:27:49,385 INFO: Pulled Message(inst_name='cattle-4nl3')
09:27:49,385 INFO: Extended deadline 3s Message(inst_name='cattle-4nl3')
09:27:49,503 INFO: Saved Message(inst_name='cattle-arpg') into database
09:27:49,504 ERROR: Caught exc: Could not restart cattle-arpg.example.net
09:27:49,656 INFO: Pulled Message(inst_name='cattle-4713')
09:27:49,656 INFO: Extended deadline 3s Message(inst_name='cattle-4713')
09:27:49,734 INFO: Saved Message(inst_name='cattle-4nl3') into database
09:27:49,734 ERROR: Caught exc: Could not restart cattle-4nl3.example.net
09:27:49,747 INFO: Done. Acked Message(inst_name='cattle-gas8')

But again, even though a message’s task errored out, it doesn’t block from being cleaned up.

• FYI: exceptions – handled or not – do not crash the  
 program
• asyncio.gather will swallow exceptions by default

exception handling
Exceptions will not crash the system - unlike non-asyncio programs. and they might go
unnoticed. So we need to account for that.

I personally like using asyncio.gather because the order of the returned results are
deterministic, but it's easy to get tripped up with it. By default, it will swallow exceptions but
happily continue working on the other tasks that were given. If an exception is never returned,
weird behavior can happen, like spinning around an event.

mixing with non-asyncio

I'm sure that as folks have started to use asyncio, they've realized that async/await starts
infecting everything around the codebase; everything needs to be async. This isn't necessarily
a bad thing; it just forces a shift in perspective.

mixing with non-asyncio
calling synchronous code from async

But sometimes, third-party code throws a wrench at you...

If you're lucky, you'll be faced with a third-party library that is multi-threaded and blocking. For
example, Google Pub/Sub's Python library makes use of gPRC under the hood via threading,
but is also blocks when we're opening up a subscription. The library also requires a non-async
callback (:grimace:) for when a message is received.

def handle_message_sync(msg):
 msg.ack()
 data = json.loads(msg.json_data)
 logging.info(f'Consumed {data["msg_id"]}')

mixing with non-asyncio: sync with asyncio
Let’s say we have a non-async function that we need to call from our asynchronous code. It
So for our code to work with this, we need to rework our async consumer.

def handle_message_sync(msg):
 ...

async def consume(queue):
 loop = asyncio.get_running_loop()
 executor = concurrent.futures.ThreadPoolExecutor(max_workers=5)
 while True:
 msg = await queue.get()
 logging.info(f'Pulled {msg}')

 asyncio.create_task(
 loop.run_in_executor(executor, handle_message_sync, msg)
)

mixing with non-asyncio: sync with asyncio
Not much needed actually.

mixing with non-asyncio: sync with asyncio
def handle_message_sync(msg):
 ...

async def consume(queue):
 loop = asyncio.get_running_loop()
 executor = concurrent.futures.ThreadPoolExecutor(max_workers=5)
 while True:
 msg = await queue.get()
 logging.info(f'Pulled {msg}')

 asyncio.create_task(
 loop.run_in_executor(executor, handle_message_sync, msg)
)

Here I'm still making use of our own asynchronous consumer coroutine to call the non-async
consumer by running the synchronous code in a threadpool executor.

mixing with non-asyncio
threaded code from async

But sometimes, third-party code throws a wrench at you...

If you're lucky, you'll be faced with a third-party library that is multi-threaded and blocking. For
example, Google Pub/Sub's Python library makes use of gPRC under the hood via threading,
but is also blocks when we're opening up a subscription. The library also requires a non-async
callback (:grimace:) for when a message is received.

def handle_message_sync(msg):
 ...

def consume_from_google_pubsub():
 client = get_subscriber_client() # some helper func
 client.subscribe(SUBSCRIPTION, handle_message_sync)

mixing with non-asyncio: threaded from async
In typical Google fashion, they'll stuff some uber-cool technology in a difficult to work-with
library. This future that's returned, it will make use of gRPC for bidirectional communication
and remove our need to periodically pull for messages as well as manage message deadlines.

To illustrate, here's how we can use loop.run_in_executor for this blocking code

mixing with non-asyncio: threaded from async
def handle_message_sync(msg):
 ...

def consume_from_google_pubsub():
 client = get_subscriber_client() # some helper func
 client.subscribe(SUBSCRIPTION, handle_message_sync) # threaded

Here, the client.subscribe from google’s python library is multithreaded

def handle_message_sync(msg):
 ...

def consume_from_google_pubsub():
 ...

async def consume():
 loop = asyncio.get_running_loop()
 executor = concurrent.futures.ThreadPoolExecutor(max_workers=5)

 await loop.run_in_executor(executor, consume_from_google_pubsub)

mixing with non-asyncio: threaded from async
And now some small tweaks to our consume function - it no longer needs to take a `queue` for
an argument, since the `consume_from_google_pubsub` is pulling from an external queue.

mixing with non-asyncio: threaded from async
def handle_message_sync(msg):
 ...

def consume_from_google_pubsub():
 ...

async def consume():
 loop = asyncio.get_running_loop()
 executor = concurrent.futures.ThreadPoolExecutor(max_workers=5)

 await loop.run_in_executor(executor, consume_from_google_pubsub)

The `loop.run_in_executor` returns a future object, which we can just await on

def handle_message_sync(msg):
 ...

def consume_from_google_pubsub():
 ...

async def consume():
 ...

async def run_something_else():
 while True:
 logging.info('Running something else')
 await asyncio.sleep(random.random())

mixing with non-asyncio: threaded from async
I’d like to also prove that this is now non-blocking, so let's add a dummy coroutine function to
be ran alongside our consume coroutine.

def handle_message_sync(msg):
 ...

def consume_from_google_pubsub():
 ...

async def consume():
 ...

async def run_something_else():
 ...

async def run_all():
 coros = [run_pubsub(), run_something_else()]
 await asyncio.gather(*coros, return_exceptions=True)

mixing with non-asyncio: threaded from async
So then sort of a main run coroutine that’s called from our main section to run forever.

17:24:09,613 INFO: Running something else
17:24:09,716 INFO: Consumed 6tal
17:24:09,716 INFO: Consumed k5yg
17:24:09,716 INFO: Consumed 0m4d
17:24:09,717 INFO: Running something else
17:24:09,820 INFO: Running something else
17:24:09,822 INFO: Consumed qiwg
17:24:09,822 INFO: Consumed pha7
17:24:09,822 INFO: Consumed ec9c
17:24:09,924 INFO: Running something else
17:24:09,929 INFO: Consumed 8mgt
17:24:09,929 INFO: Consumed x6u3
17:24:09,929 INFO: Consumed 1kue
17:24:09,929 INFO: Consumed a1og
17:24:10,26 INFO: Running something else
17:24:10,31 INFO: Consumed 204t

mixing with non-asyncio: threaded from async
Now running it will show things being consumed, and something else being ran

<TODO: skip below?>

As I mentioned, that google client is threaded to handle the regular polling of the messages,
and message deadline extensions, which is great

async def run_something_else():
 while True:
 threads = threading.enumerate()
 logging.info(f'Current thread count: {len(threads)}’)
 for thread in threads:
 logging.info(f'-- {thread.name}')
 logging.info('Sleeping for 5 seconds...')
 await asyncio.sleep(5)

mixing with non-asyncio: threaded from async
<TODO: skip?>

But, it does introduce a bunch of threads. To see what’s going on underneath the hood, we
can reuse the `run_something_else` coroutine function to get some periodic stats on our
threads.

async def run_something_else():
 while True:
 threads = threading.enumerate()
 logging.info(f'Current thread count: {len(threads)}’)
 for thread in threads:
 logging.info(f'-- {thread.name}')
 logging.info('Sleeping for 5 seconds...')
 await asyncio.sleep(5)

async def run_pubsub():
 loop = asyncio.get_running_loop()
 executor = concurrent.futures.ThreadPoolExecutor(
 max_workers=5, thread_name_prefix='Mandrill')
 # <--snip-->

mixing with non-asyncio: threaded from async
<TODO: skip?>

I'm also going to use a prefix our own threads

mixing with non-asyncio: threaded from async
async def run_something_else():
 while True:
 threads = threading.enumerate()
 logging.info(f'Current thread count: {len(threads)}’)
 for thread in threads:
 logging.info(f'-- {thread.name}')
 logging.info('Sleeping for 5 seconds...')
 await asyncio.sleep(5)

async def run_pubsub():
 loop = asyncio.get_running_loop()
 executor = concurrent.futures.ThreadPoolExecutor(
 max_workers=5, thread_name_prefix='Mandrill')
 # <--snip-->

<TODO: skip?>

from our threadpool executor so I can easily tell which threads I created versus others.

mixing with non-asyncio: threaded from async
15:35:39,693 INFO: Current thread count: 2
15:35:39,693 INFO: -- MainThread
15:35:39,693 INFO: -- Mandrill_0
15:35:39,693 INFO: Sleeping for 5 seconds...
15:35:44,697 INFO: Current thread count: 22
15:35:44,698 INFO: -- MainThread
15:35:44,698 INFO: -- Mandrill_X <-- x5
15:35:44,698 INFO: -- Thread-CallbackRequestDispatcher
15:35:44,698 INFO: -- Thread-ConsumeBidirectionalStream
15:35:44,698 INFO: -- Thread-1
15:35:44,698 INFO: -- Thread-LeaseMaintainer
15:35:44,698 INFO: -- Thread-2
15:35:44,698 INFO: -- Thread-Heartbeater
15:35:44,698 INFO: -- ThreadPoolExecutor-ThreadScheduler_X <-- x10
15:35:44,699 INFO: Sleeping for 5 seconds...
15:35:49,703 INFO: Current thread count: 22
15:35:49,704 INFO: -- MainThread

We see we have the MainThread which is the asyncio event loop. There's also five Mandrill_-
prefixed threads that were created by our threadpool executor. There's five because we limited
the number of workers when creating the executor. It looks as if the subscription client has its
own threadpool executor named ThreadPoolExecutor-ThreadScheduler; Thread-
MonitorBatchPublisher is from the publisher; and some gRPC/bidirectional streaming going on
with the rest of the threads (heart beater, lease maintainer, etc).

All in all, though, the approach to threaded code isn't any different than the non-async code.

mixing with non-asyncio
async from threads

Until you release you need to call asynchronous code from a non-async function that's within
a thread.

def handle_message_sync(msg):
 msg.ack()
 data = json.loads(msg.json_data)
 logging.info(f'Consumed {data["msg_id"]}')

mixing with non-asyncio: async from threads
We currently just ack the message once we receive it, but that’s not what we want.

We need to restart the required host and save the message in our database. We have to
somehow call asynchronous code from a non-async function, from a separate thread.

This is pretty embarrassing, bare with me.

def handle_message_sync(msg):
 data = json.loads(msg.json_data)
 logging.info(f'Consumed {data["msg_id"]}')
 asyncio.create_task(handle_message(data))

mixing with non-asyncio: async from threads
Let's first attempt to use the asyncio API that we're familar with, and update our synchronous
callback function with creating a task via asyncio.create_task from the handle_message
coroutine we defined earlier.

Note that `msg.ack` got removed since it’s taken care of in our handle_message coroutine

mixing with non-asyncio: async from threads
16:45:36,709 INFO: Running something else
16:45:36,833 INFO: Consumed es7s
16:45:36,833 ERROR: Top-level exception occurred in callback while
processing a message
Traceback (most recent call last):
 File "/Users/lynn/.pyenv/versions/ep18-37/lib/python3.7/site-packages/
google/cloud/pubsub_v1/subscriber/_protocol/streaming_pull_manager.py",
line 63, in _wrap_callback_errors
 callback(message)
 File "examples/mandrill/mayhem.py", line 115, in callback
 asyncio.create_task(handle_message(data))
 File "/Users/lynn/.pyenv/versions/3.7.0/lib/python3.7/asyncio/tasks.py",
line 320, in create_task
 loop = events.get_running_loop()
RuntimeError: no running event loop

Ugh; sure, yes this of course makes sense.

mixing with non-asyncio: async from threads
16:45:36,709 INFO: Running something else
16:45:36,833 INFO: Consumed es7s
16:45:36,833 ERROR: Top-level exception occurred in callback while
processing a message
Traceback (most recent call last):
 File "/Users/lynn/.pyenv/versions/ep18-37/lib/python3.7/site-packages/
google/cloud/pubsub_v1/subscriber/_protocol/streaming_pull_manager.py",
line 63, in _wrap_callback_errors
 callback(message)
 File "examples/mandrill/mayhem.py", line 115, in callback
 asyncio.create_task(handle_message(data))
 File "/Users/lynn/.pyenv/versions/3.7.0/lib/python3.7/asyncio/tasks.py",
line 320, in create_task
 loop = events.get_running_loop()
RuntimeError: no running event loop

At this point, we're in another thread and there is no loop running for that thread, only in the
main thread.

def handle_message_sync(msg):
 data = json.loads(msg.json_data)
 logging.info(f'Consumed {data["msg_id"]}')
 asyncio.create_task(handle_message(data))

mixing with non-asyncio: async from threads
So if we take what we have right now,…

def handle_message_sync(loop, msg):
 data = json.loads(msg.json_data)
 logging.info(f'Consumed {data["msg_id"]}')
 loop.create_task(handle_message(data))

def consume_from_google_pubsub(loop):
 client = get_subscriber_client()
 callback = functools.partial(handle_message_sync, loop)
 client.subscribe(SUBSCRIPTION, callback)

mixing with non-asyncio: async from threads
And update our function to…

mixing with non-asyncio: async from threads
def handle_message_sync(loop, msg):
 data = json.loads(msg.json_data)
 logging.info(f'Consumed {data["msg_id"]}')
 loop.create_task(handle_message(data))

def consume_from_google_pubsub(loop):
 client = get_subscriber_client()
 callback = functools.partial(handle_message_sync, loop)
 client.subscribe(SUBSCRIPTION, callback)

…gave it the main event loop we're using?

18:08:09,761 INFO: Running something else
18:08:09,826 INFO: Consumed 5236
18:08:09,826 INFO: Consumed 5237
18:08:10,543 INFO: Handling Message(inst_name='xbci')
18:08:10,543 INFO: Handling Message(inst_name='e8x5')
18:08:10,544 INFO: Running something else
18:08:10,721 INFO: Saved Message(inst_name='e8x5') into database
18:08:10,828 INFO: Saved Message(inst_name='xbci') into database
18:08:10,828 ERROR: Caught exception: Could not restart xbci.example.net
18:08:11,167 INFO: Running something else
18:08:11,549 INFO: Restarted e8x5.example.net
18:08:11,821 INFO: Done. Acked 5236
18:08:12,108 INFO: Running something else
18:08:12,276 INFO: Done. Acked 5237
18:08:12,839 INFO: Running something else
18:08:12,841 INFO: Consumed 5241
18:08:12,842 INFO: Consumed 5242

mixing with non-asyncio: async from threads
So yes! Look at that! It worked!

But this is actually deceptive. We're lucky it works.

mixing with non-asyncio
async from threads: try 2

I’ll show you why -

GLOBAL_QUEUE = asyncio.Queue()

def handle_message_sync(loop, msg):
 data = json.loads(msg.data.decode('utf-8'))
 logging.info(f'Consumed {data["msg_id"]}')
 loop.create_task(add_to_queue(data))

async def add_to_queue(msg):
 logging.info(f'Adding {msg["msg_id"]} to queue')
 await GLOBAL_QUEUE.put(msg)

async def get_from_queue(): # add to main loop to run
 while True:
 msg = await GLOBAL_QUEUE.get()
 logging.info(f'Got {msg["msg_id"]} from queue')
 asyncio.create_task(handle_message(pubsub_msg))

mixing with non-asyncio: async from threads
we’ll share some object between the threaded code in the callback, and the asynchronous
code when handling the message, we see that we've shot ourselves in the foot.

mixing with non-asyncio: async from threads
GLOBAL_QUEUE = asyncio.Queue()

def handle_message_sync(loop, msg):
 data = json.loads(msg.data.decode('utf-8'))
 logging.info(f'Consumed {data["msg_id"]}')
 loop.create_task(add_to_queue(data))

async def add_to_queue(msg):
 logging.info(f'Adding {msg["msg_id"]} to queue')
 await GLOBAL_QUEUE.put(msg)

async def get_from_queue(): # add to main loop to run
 while True:
 msg = await GLOBAL_QUEUE.get()
 logging.info(f'Got {msg["msg_id"]} from queue')
 asyncio.create_task(handle_message(pubsub_msg))

Let's create a shared queue

mixing with non-asyncio: async from threads
GLOBAL_QUEUE = asyncio.Queue()

def handle_message_sync(loop, msg):
 data = json.loads(msg.data.decode('utf-8'))
 logging.info(f'Consumed {data["msg_id"]}')
 loop.create_task(add_to_queue(data))

async def add_to_queue(msg):
 logging.info(f'Adding {msg["msg_id"]} to queue')
 await GLOBAL_QUEUE.put(msg)

async def get_from_queue(): # add to main loop to run
 while True:
 msg = await GLOBAL_QUEUE.get()
 logging.info(f'Got {msg["msg_id"]} from queue')
 asyncio.create_task(handle_message(pubsub_msg))

that our synchronous function will add to from one thread, and then

mixing with non-asyncio: async from threads
GLOBAL_QUEUE = asyncio.Queue()

def handle_message_sync(loop, msg):
 data = json.loads(msg.data.decode('utf-8'))
 logging.info(f'Consumed {data["msg_id"]}')
 loop.create_task(add_to_queue(data))

async def add_to_queue(msg):
 logging.info(f'Adding {msg["msg_id"]} to queue')
 await GLOBAL_QUEUE.put(msg)

async def get_from_queue(): # add to main loop to run
 while True:
 msg = await GLOBAL_QUEUE.get()
 logging.info(f'Got {msg["msg_id"]} from queue')
 asyncio.create_task(handle_message(pubsub_msg))

we’ll read off in another thread to continue processing it.

18:12:08,359 INFO: Consumed 5241
18:12:08,359 INFO: Consumed 5243
18:12:08,359 INFO: Consumed 5244
18:12:08,360 INFO: Consumed 5245
18:12:08,360 INFO: Consumed 5242
18:12:08,821 INFO: Adding 5241 to queue
18:12:08,821 INFO: Adding 5243 to queue
18:12:08,822 INFO: Adding 5244 to queue
18:12:08,822 INFO: Adding 5245 to queue
18:12:08,822 INFO: Adding 5242 to queue
18:12:13,403 INFO: Consumed 5246
18:12:13,404 INFO: Consumed 5249
18:12:13,404 INFO: Consumed 5247
18:12:13,404 INFO: Consumed 5250
18:12:13,404 INFO: Consumed 5248
18:12:13,875 INFO: Adding 5246 to queue
18:12:13,876 INFO: Adding 5249 to queue

mixing with non-asyncio: async from threads Running it, we see something funky. The log line that gets from the global queue never shows;
it doesn't ever look like we consume from our global queue.

GLOBAL_QUEUE = asyncio.Queue()

def handle_message_sync(loop, msg):
 data = json.loads(msg.data.decode('utf-8'))
 logging.info(f'Consumed {data["msg_id"]}')
 loop.create_task(add_to_queue(data))

async def add_to_queue(msg):
 logging.info(f'Adding {msg["msg_id"]} to queue')
 await GLOBAL_QUEUE.put(msg)

async def get_from_queue(): # add to main loop to run
 while True:
 msg = await GLOBAL_QUEUE.get()
 logging.info(f'Got {msg["msg_id"]} from queue')
 asyncio.create_task(handle_message(pubsub_msg))

mixing with non-asyncio: async from threads
If we add a line in our

GLOBAL_QUEUE = asyncio.Queue()

def handle_message_sync(loop, msg):
 data = json.loads(msg.data.decode('utf-8'))
 logging.info(f'Consumed {data["msg_id"]}')
 loop.create_task(add_to_queue(data))

async def add_to_queue(msg):
 logging.info(f'Adding {msg["msg_id"]} to queue')
 await GLOBAL_QUEUE.put(msg)
 logging.info(f'Current queue size: {GLOBAL_QUEUE.qsize()}')

async def get_from_queue(): # add to main loop to run
 while True:
 msg = await GLOBAL_QUEUE.get()
 logging.info(f'Got {msg["msg_id"]} from queue')
 asyncio.create_task(handle_message(pubsub_msg))

mixing with non-asyncio: async from threads
add_to_queue coroutine

mixing with non-asyncio: async from threads
GLOBAL_QUEUE = asyncio.Queue()

def handle_message_sync(loop, msg):
 data = json.loads(msg.data.decode('utf-8'))
 logging.info(f'Consumed {data["msg_id"]}')
 loop.create_task(add_to_queue(data))

async def add_to_queue(msg):
 logging.info(f'Adding {msg["msg_id"]} to queue')
 await GLOBAL_QUEUE.put(msg)
 logging.info(f'Current queue size: {GLOBAL_QUEUE.qsize()}')

async def get_from_queue(): # add to main loop to run
 while True:
 msg = await GLOBAL_QUEUE.get()
 logging.info(f'Got {msg["msg_id"]} from queue')
 asyncio.create_task(handle_message(pubsub_msg))

to see the queue size:

18:17:09,537 INFO: Adding 5273 to queue
18:17:09,537 INFO: Current queue size: 3
18:17:09,537 INFO: Adding 5274 to queue
18:17:09,537 INFO: Current queue size: 4
18:17:09,537 INFO: Adding 5275 to queue
18:17:09,537 INFO: Current queue size: 5
18:17:14,572 INFO: Adding 5276 to queue
18:17:14,572 INFO: Current queue size: 6
18:17:14,572 INFO: Adding 5277 to queue
18:17:14,572 INFO: Current queue size: 7
18:17:14,572 INFO: Adding 5278 to queue
18:17:14,572 INFO: Current queue size: 8
18:17:14,572 INFO: Adding 5279 to queue
18:17:14,572 INFO: Current queue size: 9
18:17:14,572 INFO: Adding 5280 to queue
18:17:14,572 INFO: Current queue size: 10

mixing with non-asyncio: async from threads
We can see that the queue is ever-growing, and in fact we're not reading from it.

I'm sure a lot of you see what's going on here. We're not thread safe. /facepalm/

GLOBAL_QUEUE = asyncio.Queue()

def handle_message_sync(loop, msg):
 data = json.loads(msg.data.decode('utf-8'))
 logging.info(f'Consumed {data["msg_id"]}')
 loop.create_task(add_to_queue(data))

async def add_to_queue(msg):
 logging.info(f'Adding {msg["msg_id"]} to queue')
 await GLOBAL_QUEUE.put(msg)

async def get_from_queue(): # add to main loop to run
 while True:
 msg = await GLOBAL_QUEUE.get()
 logging.info(f'Got {msg["msg_id"]} from queue')
 asyncio.create_task(handle_message(pubsub_msg))

mixing with non-asyncio: async from threads
So instead of creating a task on the main event loop from a different thread

GLOBAL_QUEUE = asyncio.Queue()

def handle_message_sync(loop, msg):
 data = json.loads(msg.data.decode('utf-8'))
 logging.info(f'Consumed {data["msg_id"]}')
 asyncio.run_coroutine_threadsafe(add_to_queue(data), loop)

async def add_to_queue(msg):
 logging.info(f'Adding {msg["msg_id"]} to queue')
 await GLOBAL_QUEUE.put(msg)

async def get_from_queue(): # add to main loop to run
 while True:
 msg = await GLOBAL_QUEUE.get()
 logging.info(f'Got {msg["msg_id"]} from queue')
 asyncio.create_task(handle_message(pubsub_msg))

mixing with non-asyncio: async from threads
Let's make use of

GLOBAL_QUEUE = asyncio.Queue()

def handle_message_sync(loop, msg):
 data = json.loads(msg.data.decode('utf-8'))
 logging.info(f'Consumed {data["msg_id"]}')
 asyncio.run_coroutine_threadsafe(add_to_queue(data), loop)

async def add_to_queue(msg):
 logging.info(f'Adding {msg["msg_id"]} to queue')
 await GLOBAL_QUEUE.put(msg)

async def get_from_queue(): # add to main loop to run
 while True:
 msg = await GLOBAL_QUEUE.get()
 logging.info(f'Got {msg["msg_id"]} from queue')
 asyncio.create_task(handle_message(pubsub_msg))

mixing with non-asyncio: async from threads
asyncio.run_coroutine_threadsafe to see what happens; the “threadsafe” in the API name
should give a clue

10:42:51,762 INFO: Consumed 146
10:42:51,763 INFO: Consumed 147
10:42:51,763 INFO: Adding 146 to queue
10:42:51,763 INFO: Current queue size: 1
10:42:51,763 INFO: Adding 147 to queue
10:42:51,763 INFO: Consumed 148
10:42:51,763 INFO: Current queue size: 2
10:42:51,764 INFO: Consumed 149
10:42:51,764 INFO: Got 146 from queue
10:42:51,764 INFO: Got 147 from queue
10:42:51,764 INFO: Handling PubSubMessage(instance_name='1nco')
10:42:51,764 INFO: Handling PubSubMessage(instance_name='54fr')
10:42:51,764 INFO: Adding 148 to queue
10:42:51,764 INFO: Current queue size: 1
10:42:51,764 INFO: Adding 149 to queue
10:42:51,765 INFO: Current queue size: 2

mixing with non-asyncio: async from threads
And finally we have it!

• ThreadPoolExecutor: calling sync from a coroutine
• asyncio.create_task: calling a coroutine from sync
• asyncio.run_coroutine_threadsafe: calling a coroutine 
 from another thread 

mixing with non-asyncio
<TODO: flesh out more>

In my opinion, it isn't difficult to work with synchronous code with asyncio.

However, it is difficult to work with threads, particularly with asyncio. If you must, use the
_threadsafe APIs that asyncio gives you.

Lynn Root | SRE | @roguelynn

Thank you!
rogue.ly/aio

So in essence, this talk is something I would have liked a year ago; so I'm speaking to past
Lynn here. But I'm hoping there are others that benefit from a use case that's not a web
crawler.

Thanks!

