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CHANNELS 1.0
3 years old design

no standard interface like WSGI

push everything over network

tricky deploy

django session abuse
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3 YEARS OF EXPERIENCE
800+ commits

450+ issues closed

100+ contributors

40+ releases
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NO STANDARD INTERFACE

This wide variety of choices can be a problem for new
Python users, because generally speaking, their choice
of web framework will limit their choice of usable web

servers, and vice versa.

PEP 333
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https://www.python.org/dev/peps/pep-0333/


PUSH EVERYTHING OVER NETWORK

TBH, the main reason I like microservices
is that I feel like my method calls are too

fast and I’d prefer to throw in some
latency.

Aaron Patterson (@tenderlove)

March 6, 2015
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https://twitter.com/tenderlove/status/573907559871971328?ref_src=twsrc%5Etfw


TRICKY DEPLOY
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FOR HELLO WORLD
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FOR CHAT
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SESSION USAGE
@channel_session

@http_session

@channel_and_http_session

@channel_and_http_session_user_from_http

@enforce_ordering
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GROUPS ISSUES
Mostly used wrong

Exposed to user

Too complex to be fully implemented
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ASGI REDIS ISSUES
Incomplete groups support

Daphne constantly pools redis

Does not support transparent scale
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ASGI RABBITMQ ISSUE
Have really complex implementation

Needs really careful production setup

But fully compatible with ASGI spec
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CHANNELS 1.0
Too complex to show incoming message counter
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ACTUAL REQUIREMENTS
Send to channel from everywhere

Simultaneous usage of sync and async code

React on websocket events on another machine

Cross-socket and cross-process communication
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MOVING THE LINE
Run workers and Daphne in the same process

Store socket state locally

Remove "send-to-layer" conventions
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HELLO WORLD DEPLOY
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CHAT DEPLOY

18



IMPLEMENTATION
Sync <=> async bridge

Twisted over asyncio

Remove Python 2 support

Consumers as �rst class citizens

Routing is a consumer too
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SYNC TO ASYNC
class SyncToAsync: 

    threadpool = ThreadPoolExecutor() 

    def __init__(self, func): 
        self.func = func 

    async def __call__(self, *args, **kwargs): 
        loop = asyncio.get_event_loop() 
        future = loop.run_in_executor( 
            self.threadpool, 
            partial(self.func, *args, **kwargs), 
        ) 
        return await asyncio.wait_for(future)
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ASYNC TO SYNC
class AsyncToSync: 

    def __init__(self, awaitable): 
        self.awaitable = awaitable 

    def __call__(self, *args, **kwargs): 
        call_result = Future() 
        event_loop.call_soon_threadsafe( 
            asyncio.ensure_future, 
            wrap(self.awaitable args, kwargs), 
        ) 
        call_result.result()
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MODERN TWISTED
@router.route("/gethostbyname/<name>") 
async def hostname(self, request: IRequest) -> IResponse: 
    try: 
        address = await getHostName() 
    except DNSNameError: 
        request.setResponseCode(http.NOT_FOUND) 
        return "no such host" 
    except DNSLookupError: 
        request.setResponseCode(http.NOT_FOUND) 
        return "lookup error" 
    return address
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CONSUMERS
class AsyncChatConsumer(AsyncConsumer): 

    async def websocket_connect(self, message): 

        await self.send({ 
            "type": "websocket.accept", 
        }) 

        self.username = "Anonymous" 

        await self.send({ 
            "type": "websocket.send", 
            "text": "[Welcome %s!]" % self.username, 
        })
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ROUTING
application = ProtocolTypeRouter({ 
    "http": URLRouter([ 
        url("^", DjangoViewSystem), 
    ]), 
    "websocket": URLRouter([ 
        url("^chat/$", AsyncChatConsumer), 
    ]), 
    "mqtt": MqttTemperatureConsumer, 
    "email": EmailToRouter([ 
        regex("@support.org", SupportTicketHandler), 
    ]), 
    "sms": SMSFromRouter([ 
        phone("+1", USTextHandler), 
    ]), 
})
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RESULTS
Removes a lot of handshaking traf�c

Groups are be hidden in the consumer

First steps to async Django
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LINKS
 

 
 

Channels 2.0 Docs
Towards Channels 2.0
Channels 2: October

Uvicorn: The lightning-fast asyncio server.
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http://channels.readthedocs.io/en/2.0/
http://www.aeracode.org/2017/07/11/towards-channels-20/
http://www.aeracode.org/2017/10/18/channels-2-october/
http://www.uvicorn.org/


TO BE CONTINUED
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