
CHANNELS 2.0
ARTEM MALYSHEV

@PROOFIT404

1

CHANNELS 1.0
3 years old design

no standard interface like WSGI

push everything over network

tricky deploy

django session abuse

2

3 YEARS OF EXPERIENCE
800+ commits

450+ issues closed

100+ contributors

40+ releases

3

NO STANDARD INTERFACE

This wide variety of choices can be a problem for new
Python users, because generally speaking, their choice
of web framework will limit their choice of usable web

servers, and vice versa.

PEP 333

4

https://www.python.org/dev/peps/pep-0333/

PUSH EVERYTHING OVER NETWORK

TBH, the main reason I like microservices
is that I feel like my method calls are too

fast and I’d prefer to throw in some
latency.

Aaron Patterson (@tenderlove)

March 6, 2015

5

https://twitter.com/tenderlove/status/573907559871971328?ref_src=twsrc%5Etfw

TRICKY DEPLOY

6

FOR HELLO WORLD

7

FOR CHAT

8

SESSION USAGE
@channel_session

@http_session

@channel_and_http_session

@channel_and_http_session_user_from_http

@enforce_ordering

9

GROUPS ISSUES
Mostly used wrong

Exposed to user

Too complex to be fully implemented

10

ASGI REDIS ISSUES
Incomplete groups support

Daphne constantly pools redis

Does not support transparent scale

11

ASGI RABBITMQ ISSUE
Have really complex implementation

Needs really careful production setup

But fully compatible with ASGI spec

12

CHANNELS 1.0
Too complex to show incoming message counter

13

14

ACTUAL REQUIREMENTS
Send to channel from everywhere

Simultaneous usage of sync and async code

React on websocket events on another machine

Cross-socket and cross-process communication

15

MOVING THE LINE
Run workers and Daphne in the same process

Store socket state locally

Remove "send-to-layer" conventions

16

HELLO WORLD DEPLOY

17

CHAT DEPLOY

18

IMPLEMENTATION
Sync <=> async bridge

Twisted over asyncio

Remove Python 2 support

Consumers as �rst class citizens

Routing is a consumer too

19

SYNC TO ASYNC
class SyncToAsync:

 threadpool = ThreadPoolExecutor()

 def __init__(self, func):
 self.func = func

 async def __call__(self, *args, **kwargs):
 loop = asyncio.get_event_loop()
 future = loop.run_in_executor(
 self.threadpool,
 partial(self.func, *args, **kwargs),
)
 return await asyncio.wait_for(future)

20

ASYNC TO SYNC
class AsyncToSync:

 def __init__(self, awaitable):
 self.awaitable = awaitable

 def __call__(self, *args, **kwargs):
 call_result = Future()
 event_loop.call_soon_threadsafe(
 asyncio.ensure_future,
 wrap(self.awaitable args, kwargs),
)
 call_result.result()

21

MODERN TWISTED
@router.route("/gethostbyname/<name>")
async def hostname(self, request: IRequest) -> IResponse:
 try:
 address = await getHostName()
 except DNSNameError:
 request.setResponseCode(http.NOT_FOUND)
 return "no such host"
 except DNSLookupError:
 request.setResponseCode(http.NOT_FOUND)
 return "lookup error"
 return address

22

CONSUMERS
class AsyncChatConsumer(AsyncConsumer):

 async def websocket_connect(self, message):

 await self.send({
 "type": "websocket.accept",
 })

 self.username = "Anonymous"

 await self.send({
 "type": "websocket.send",
 "text": "[Welcome %s!]" % self.username,
 })

23

ROUTING
application = ProtocolTypeRouter({
 "http": URLRouter([
 url("^", DjangoViewSystem),
]),
 "websocket": URLRouter([
 url("^chat/$", AsyncChatConsumer),
]),
 "mqtt": MqttTemperatureConsumer,
 "email": EmailToRouter([
 regex("@support.org", SupportTicketHandler),
]),
 "sms": SMSFromRouter([
 phone("+1", USTextHandler),
]),
})

24

RESULTS
Removes a lot of handshaking traf�c

Groups are be hidden in the consumer

First steps to async Django

25

LINKS

Channels 2.0 Docs
Towards Channels 2.0
Channels 2: October

Uvicorn: The lightning-fast asyncio server.

26

http://channels.readthedocs.io/en/2.0/
http://www.aeracode.org/2017/07/11/towards-channels-20/
http://www.aeracode.org/2017/10/18/channels-2-october/
http://www.uvicorn.org/

TO BE CONTINUED

27

