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We’ll cover
Application of Deep Learning to business tasks

Faster training with distributed Deep Learning



Why are we doing it?
Figure out ourselves as we have tasks like this @ work

Share the results with you





1. Modeling
a. Motivation
b. Classical approach
c. Deep learning
d. Practical example

2. Performance optimization
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● Do I really need Deep Learning?

   E.g. Churn Prediction

Why Deep Learning?



What is Churn Prediction?

Churn prediction = detect customers who are about to leave 
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Classical approach
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Gradient Boosting

● Combination of weak trees
● Next tree is built to fix errors of the previous one. 



Feature calculation is a little problem

id timestamp event_type event_value

1 1508167056 connect NaN

1 1508168792 purchase 100

... ... ... ...

id f_1 f_2 f_3 ... f_n label

1 US 130 F ... -1.2 0

2 RU 1 M ... 11.0 0

3 DE 24 F ... NaN 1

... ... ... ... ... ... ...
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Feature calculation is a big problem

50 
event 
types

5 
aggreg. 

functions

10 
aggreg. 
periods

10 
lags

25 000
columns

Are the aggregations and periods 
chosen correctly?



We need something different 
Label

0

1

1

?



Deep Learning goes on stage
Label

0

1

1



Feature calculation is not a problem

50 
event 
types

5 
aggreg. 

functions

10 
aggreg. 
periods

10 
lags

250
columns
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TensorFlow and Keras

● TensorFlow is an ML library from Google
● Flexible, supports LSTM/GRU, has python API



TensorFlow and Keras

● Keras is a high-level NN API in Python 
● Runs on top of TensorFlow, CNTK, or Theano
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Vikings
● Mobile and browser MMO
● Actions: 

○ create and develop clans, 
○ train troops 
○ upgrade heroes and towns
○ obtain resources
○ attack others

● Social interactions, competitions
● Tons of data



Vikings dataset
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Vikings dataset

● 3 months
● Churn is < 2 sessions for the first 3 weeks of August
● No newcomers, > 7 game days
● Relatively active

   Input data (3 months)
Churn 

definition 
(3 weeks)

>= 1 session

2017-05-01 2017-08-01 2017-08-23



Vikings dataset

100k random players, 121 features, 92 days

~9 Gb unarchived

Input data (3 months)
Churn 

definition 
(3 weeks)

2017-05-01 2017-08-01 2017-08-23



Neural Network Architecture
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Let’s code (finally) 
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Let’s train



Model performance



Train on 64000 samples, validate on 16000 samples
Epoch 1/10
64000/64000 [==============================] - 952s - loss: 0.2714 - val_loss: 0.2098
Epoch 2/10
64000/64000 [==============================] - 945s - loss: 0.2190 - val_loss: 0.2139
...
Epoch 9/10
64000/64000 [==============================] - 940s - loss: 0.2048 - val_loss: 0.2062
Epoch 10/10
64000/64000 [==============================] - 944s - loss: 0.2003 - val_loss: 0.1937

● Training - 16 minutes per epoch, ~3 hours in total

Speed performance
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Speed performance
Train on 64000 samples, validate on 16000 samples
Epoch 1/10
64000/64000 [==============================] - 952s - loss: 0.2714 - val_loss: 0.2098
Epoch 2/10
64000/64000 [==============================] - 945s - loss: 0.2190 - val_loss: 0.2139
...
Epoch 9/10
64000/64000 [==============================] - 940s - loss: 0.2048 - val_loss: 0.2062
Epoch 10/10
64000/64000 [==============================] - 944s - loss: 0.2003 - val_loss: 0.1937

● Training - 16 minutes per epoch, ~3 hours in total

● Execution - 1 minute for each 10k customers

● Hardware: 2 x Intel Xeon CPU E5-2620 v4 @ 2.10GHz (16 threads each)



What we’ve learned so far
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Which Types of Tasks Need Speedup?

In Big Data era, the more data = the better. 

Models for regular business tasks = lots of data (users x 

events)!

Speech/image recognition, physics modelling = lots of data



So how do we make 
training process 
faster?



1. Churn Prediction
2. Performance optimization

a. Background
b. History
c. Parallelism Types
d. Existing Frameworks
e. Benchmarks



Jeff Dean





History
This paper introduced a new approaches

1. Downpour SGD
2. Sandblaster L-BFGS

...These are Asynchronous Data Parallelism algorithms!



1. Churn Prediction
2. Performance optimization

a. Background
b. History
c. Parallelism Types
d. Existing Frameworks
e. Benchmarks



Parallelism Types



Tricky to implement for fully connected networks:

● Layers will have to communicate across different devices

● You have to understand you model very well

Model Parallelism



Let’s settle on 
Data Parallelism



How do we 
synchronize all 
models?



Architecture for Data Parallelism



Data Parallelism: Synchronous
Upsides

● Potentially bigger learning rates

Downsides:

● Limited parallelism
● Usually slower



Data Parallelism: Asynchronous
Upsides:

● Better Scalability
● Better Cluster Load

Downsides:

● “the straggler problem” – due to staleness of coefficients
● not converging sometimes



VS
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Alright, let’s use 
TF in distributed 
mode…







Or we had better find an alternative?
TF Distributed is quite tedious to configure

You have to run it manually



+



https://github.com/yahoo/TensorFlowOnSpark

https://github.com/yahoo/TensorFlowOnSpark


https://deeplearning4j.org/

https://deeplearning4j.org/


A better alternative 
would be...



https://github.com/cerndb/dist-keras

https://github.com/cerndb/dist-keras


DistKeras



Joeri Hermans + CERN = AWESOMENESS



Well-written

Jupyter Notebooks to get you started

Anyone can understand the code, take a look at it!

...and it works on Spark!

DistKeras



Image: Joeri Hermans, On Scalable Deep Learning and Parallelizing Gradient Descent



DistKeras Architecture

Trainer

Worker

Worker

Worker

Model



API (AEASGD)



Trainer (AEASGD)



Worker (AEASGD)
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Hardware
Couldn’t use cluster @ Work

Instead, we used AWS



Methods
We used: Averaging, ADAG, AEASGD 

Ran on 1, 4, 8 nodes

Experimented with params, settled for defaults



Dataset
Dataset we used is very similar to the one from Vikings

It comes from GDMC 2017 
https://cilab.sejong.ac.kr/gdmc2017/

https://cilab.sejong.ac.kr/gdmc2017/index.php/introduction/


1 Machine (CPU)

c4.4xlarge: 16 cores, 30 GB RAM

Training time: 8251 seconds (~2,3 hours) for 10 epochs

Score: 0.958



EMR Cluster

m4.xlarge: 4 cores, 16 GB RAM (c4 is twice more expensive)

Played with many configurations

But we show results only for 4 and 8 worker machines



DistKeras: Test Score / Time



1 Machine (GPU)

Machine Hardware Score Time
p2.xlarge Tesla K80 0.957 2780.87

p3.2xlarge Volta V100 0.957 2037.63

P2 instances

P3 instances (new!)

Used CUDA 9



Cost Efficiency

Type Hardware Price/hour Score Time Cost

CPU c4.4xlarge $0.796 0.958 8251 $1.82

EMR 1 + 4 m4.xlarge 5 x $0.26* 0.957 6734** $2.43

EMR 1 + 8 m4.xlarge 9 x $0.26* 0.956 2933*** $1.91

GPU 1 x p2.xlarge $0.9 0.957 2781 $0.69

GPU 1 x p3.2xlarge $3.06 0.957 2038 $1.73

* price with EMR service cost = 0.06
** 9 epochs to reach this score
*** 7 epochs to reach this score



Take-home Lesson

Got cluster? 1 x GPU

Got extra 
$$$?

CPU Cluster
(ADAG)

GPU Cluster

NO

NO

YES

YES



Recommendations

DistKeras + Spark cluster = Quick Setup

Use asynchronous updates (ADAG!)

Watch for loss explosions



Recommendations

Try Deep Learning for your tasks

Start with good problem definition

Keras is a good starting point

Use Dropout, BatchNorm, modern optimizers (like Adam)



Thank you



Plarium Krasnodar is hiring

● Data Engineer 

● Data Scientist

hr.team@plarium.com

mailto:hr.team@plarium.com

