
#NoTPU
When you’re simply not google enough

Saint Petersburg
- November

Vladimir Shulyak

Data Science Engineer

Anton Kiselev

Lead Data Scientist

We’ll cover
Application of Deep Learning to business tasks

Faster training with distributed Deep Learning

Why are we doing it?
Figure out ourselves as we have tasks like this @ work

Share the results with you

1. Modeling
a. Motivation
b. Classical approach
c. Deep learning
d. Practical example

2. Performance optimization

1. Modeling
a. Motivation
b. Classical approach
c. Deep learning
d. Practical example

2. Performance optimization

Why Deep Learning?
● Retail / e-commerce / banking / SaaS / telco / gaming

● Retail / e-commerce / banking / SaaS / telco / gaming
● No

○ Voice assistants
○ Robots
○ AI go-players

Why Deep Learning?

● Retail / e-commerce / banking / SaaS / telco / gaming
● No

○ Voice assistants
○ Robots
○ AI go-players

● Do I really need Deep Learning?

Why Deep Learning?

● Retail / e-commerce / banking / SaaS / telco / gaming
● No

○ Voice assistants
○ Robots
○ AI go-players

● Do I really need Deep Learning?

 E.g. Churn Prediction

Why Deep Learning?

What is Churn Prediction?

Churn prediction = detect customers who are about to leave

Churn types
Contractual

Churn types
Contractual Non-contractual

Churn problem. Basic definition

Customer 1

Customer 2

Customer N

Input data Target
definition

Label

0

1

1

Churn problem. Basic definition

Customer 1

Customer 2

Customer N

Input data Target
definition

Label

0

1

1

Churn problem. Basic definition

Customer 1

Customer 2

Customer N

Input data Target
definition

Label

0

1

1

Churn problem. Basic definition

Customer 1

Customer 2

Customer N

Input data Target
definition

Label

0

1

1

1. Modeling
a. Motivation
b. Classical approach
c. Deep learning
d. Practical example

2. Performance optimization

Classical approach

id f_1 f_2 f_3 ... f_n label

1 US 130 F ... -1.2 0

2 RU 1 M ... 11.0 0

3 DE 24 F ... NaN 1

...

Classical approach

id f_1 f_2 f_3 ... f_n label

1 US 130 F ... -1.2 0

2 RU 1 M ... 11.0 0

3 DE 24 F ... NaN 1

...

Gradient Boosting

● Combination of weak trees
● Next tree is built to fix errors of the previous one.

Feature calculation is a little problem

id timestamp event_type event_value

1 1508167056 connect NaN

1 1508168792 purchase 100

...

id f_1 f_2 f_3 ... f_n label

1 US 130 F ... -1.2 0

2 RU 1 M ... 11.0 0

3 DE 24 F ... NaN 1

...

Feature calculation is a little problem

Customer 1

Customer 2

Customer N

1 day

SUM, COUNT, MIN, MAX, …
of

VISITS

3 days

X days

Feature calculation is a little problem

Customer 1

Customer 2

Customer N

1 day

SUM, COUNT, MIN, MAX, …
of

VISITS

3 days

X days

PURCHASES

Feature calculation is a little problem

Customer 1

Customer 2

Customer N

1 day

SUM, COUNT, MIN, MAX, …
of

VISITS

3 days

X days

PURCHASES
REFUNDS

Feature calculation is a little problem

Customer 1

Customer 2

Customer N

1 day

SUM, COUNT, MIN, MAX, …
of

VISITS

3 days

X days

PURCHASES
REFUNDS BATTLES

Feature calculation is a little problem

Customer 1

Customer 2

Customer N

1 day

SUM, COUNT, MIN, MAX, …
of

VISITS

3 days

X days

PURCHASES
REFUNDS BATTLES

Feature calculation is a problem

Customer 1

1 day

X days

1 day

X days

SUM, COUNT, MIN, MAX, …
of

VISITS PURCHASES
REFUNDS BATTLES

Feature calculation is a problem

Customer 1

1 day

X days

1 day

X days

SUM, COUNT, MIN, MAX, …
of

VISITS PURCHASES
REFUNDS BATTLES

Feature calculation is a big problem

50
event
types

5
aggreg.

functions

10
aggreg.
periods

10
lags

25 000
columns

Are the aggregations and periods
chosen correctly?

We need something different
Label

0

1

1

?

Deep Learning goes on stage
Label

0

1

1

Feature calculation is not a problem

50
event
types

5
aggreg.

functions

10
aggreg.
periods

10
lags

250
columns

1. Modeling
a. Motivation
b. Classical approach
c. Deep learning
d. Practical example

2. Performance optimization

Recurrent Neural Network

Neural Network that accepts sequences as an input

Recurrent Neural Network

Neural Network that accepts sequences as an input

LSTM and GRU

LSTM and GRU

LSTM and GRU

TensorFlow and Keras

● TensorFlow is an ML library from Google
● Flexible, supports LSTM/GRU, has python API

TensorFlow and Keras

● Keras is a high-level NN API in Python
● Runs on top of TensorFlow, CNTK, or Theano

1. Modeling
a. Motivation
b. Classical approach
c. Deep learning
d. Practical example

2. Performance optimization

Vikings
● Mobile and browser MMO

Vikings
● Mobile and browser MMO
● Actions:

○ create and develop clans,
○ train troops
○ upgrade heroes and towns
○ obtain resources
○ attack others

Vikings
● Mobile and browser MMO
● Actions:

○ create and develop clans,
○ train troops
○ upgrade heroes and towns
○ obtain resources
○ attack others

● Social interactions, competitions
● Tons of data

Vikings dataset

Input data (3 months)

2017-05-01 2017-08-01

Churn
definition
(3 weeks)

2017-08-23

Vikings dataset

● 3 months

Input data (3 months)
Churn

definition
(3 weeks)

2017-05-01 2017-08-01 2017-08-23

Vikings dataset

● 3 months

Input data (3 months)
Churn

definition
(3 weeks)

2017-05-01 2017-08-01 2017-08-23

Vikings dataset

● 3 months
● Churn is < 2 sessions for the first 3 weeks of August

Input data (3 months)
Churn

definition
(3 weeks)

< 2 sessions

2017-05-01 2017-08-01 2017-08-23

Vikings dataset

● 3 months
● Churn is < 2 sessions for the first 3 weeks of August
● No newcomers, > 7 game days

 Input data (3 months)
Churn

definition
(3 weeks)

< 2 weeks

2017-05-01 2017-08-01 2017-08-23

Vikings dataset

● 3 months
● Churn is < 2 sessions for the first 3 weeks of August
● No newcomers, > 7 game days
● Relatively active

 Input data (3 months)
Churn

definition
(3 weeks)

>= 1 session

2017-05-01 2017-08-01 2017-08-23

Vikings dataset

100k random players, 121 features, 92 days

~9 Gb unarchived

Input data (3 months)
Churn

definition
(3 weeks)

2017-05-01 2017-08-01 2017-08-23

Neural Network Architecture

Input

RNN Layer 1

RNN Layer 2

Dense Layer

Output

Dropout

Batch Norm

GRU

RNN Layer

Activation

Batch Norm

Dense

Dense Layer

Neural Network Architecture

Input

RNN Layer 1

RNN Layer 2

Dense Layer

Output

Dropout

Batch Norm

GRU

RNN Layer

Activation

Batch Norm

Dense

Dense Layer

Neural Network Architecture

Input

RNN Layer 1

RNN Layer 2

Dense Layer

Output

Dropout

Batch Norm

GRU

RNN Layer

Activation

Batch Norm

Dense

Dense Layer

Input

RNN Layer 1

RNN Layer 2

Dense Layer

Output

Dropout

Batch Norm

GRU

RNN Layer

Activation

Batch Norm

Dense

Dense Layer

Neural Network Architecture

Input

RNN Layer 1

RNN Layer 2

Dense Layer

Output

Dropout

Batch Norm

GRU

RNN Layer

Activation

Batch Norm

Dense

Dense Layer

Neural Network Architecture

Let’s code (finally)

Let’s code (finally)

Let’s code (finally)

Let’s train

Model performance

Train on 64000 samples, validate on 16000 samples
Epoch 1/10
64000/64000 [==============================] - 952s - loss: 0.2714 - val_loss: 0.2098
Epoch 2/10
64000/64000 [==============================] - 945s - loss: 0.2190 - val_loss: 0.2139
...
Epoch 9/10
64000/64000 [==============================] - 940s - loss: 0.2048 - val_loss: 0.2062
Epoch 10/10
64000/64000 [==============================] - 944s - loss: 0.2003 - val_loss: 0.1937

● Training - 16 minutes per epoch, ~3 hours in total

Speed performance

Speed performance
Train on 64000 samples, validate on 16000 samples
Epoch 1/10
64000/64000 [==============================] - 952s - loss: 0.2714 - val_loss: 0.2098
Epoch 2/10
64000/64000 [==============================] - 945s - loss: 0.2190 - val_loss: 0.2139
...
Epoch 9/10
64000/64000 [==============================] - 940s - loss: 0.2048 - val_loss: 0.2062
Epoch 10/10
64000/64000 [==============================] - 944s - loss: 0.2003 - val_loss: 0.1937

● Training - 16 minutes per epoch, ~3 hours in total

● Execution - 1 minute for each 10k customers

Speed performance
Train on 64000 samples, validate on 16000 samples
Epoch 1/10
64000/64000 [==============================] - 952s - loss: 0.2714 - val_loss: 0.2098
Epoch 2/10
64000/64000 [==============================] - 945s - loss: 0.2190 - val_loss: 0.2139
...
Epoch 9/10
64000/64000 [==============================] - 940s - loss: 0.2048 - val_loss: 0.2062
Epoch 10/10
64000/64000 [==============================] - 944s - loss: 0.2003 - val_loss: 0.1937

● Training - 16 minutes per epoch, ~3 hours in total

● Execution - 1 minute for each 10k customers

● Hardware: 2 x Intel Xeon CPU E5-2620 v4 @ 2.10GHz (16 threads each)

What we’ve learned so far

Deep Neural Networks are

● very flexible

Deep Neural Networks are

● very flexible
● well performing

Deep Neural Networks are

● very flexible
● well performing
● simplify time series feature calculation

Deep Neural Networks are

● very flexible
● well performing
● simplify time series feature calculation
● not scary, especially with Keras

Deep Neural Networks are

● very flexible
● well performing
● simplify time series feature calculation
● not scary, especially with Keras
● demanding for resources

Deep Neural Networks are

● very flexible
● well performing
● simplify time series feature calculation
● not scary, especially with Keras
● demanding for resources
● slow....

How to make it faster?

Deep Neural Networks are

● very flexible
● well performing
● simplify time series feature calculation
● not scary, especially with Keras
● demanding for resources
● slow....

How to make it faster?

1. Churn Prediction
2. Performance optimization

a. Background
b. History
c. Parallelism Types
d. Existing Frameworks
e. Benchmarks

1. Churn Prediction
2. Performance optimization

a. Background
b. History
c. Parallelism Types
d. Existing Frameworks
e. Benchmarks

Which Types of Tasks Need Speedup?

In Big Data era, the more data = the better.

Models for regular business tasks = lots of data (users x

events)!

Speech/image recognition, physics modelling = lots of data

So how do we make
training process
faster?

1. Churn Prediction
2. Performance optimization

a. Background
b. History
c. Parallelism Types
d. Existing Frameworks
e. Benchmarks

Jeff Dean

History
This paper introduced a new approaches

1. Downpour SGD
2. Sandblaster L-BFGS

...These are Asynchronous Data Parallelism algorithms!

1. Churn Prediction
2. Performance optimization

a. Background
b. History
c. Parallelism Types
d. Existing Frameworks
e. Benchmarks

Parallelism Types

Tricky to implement for fully connected networks:

● Layers will have to communicate across different devices

● You have to understand you model very well

Model Parallelism

Let’s settle on
Data Parallelism

How do we
synchronize all
models?

Architecture for Data Parallelism

Data Parallelism: Synchronous
Upsides

● Potentially bigger learning rates

Downsides:

● Limited parallelism
● Usually slower

Data Parallelism: Asynchronous
Upsides:

● Better Scalability
● Better Cluster Load

Downsides:

● “the straggler problem” – due to staleness of coefficients
● not converging sometimes

VS

1. Churn Prediction
2. Performance optimization

a. Background
b. History
c. Parallelism Types
d. Existing Frameworks
e. Benchmarks

Alright, let’s use
TF in distributed
mode…

Or we had better find an alternative?
TF Distributed is quite tedious to configure

You have to run it manually

+

https://github.com/yahoo/TensorFlowOnSpark

https://github.com/yahoo/TensorFlowOnSpark

https://deeplearning4j.org/

https://deeplearning4j.org/

A better alternative
would be...

https://github.com/cerndb/dist-keras

https://github.com/cerndb/dist-keras

DistKeras

Joeri Hermans + CERN = AWESOMENESS

Well-written

Jupyter Notebooks to get you started

Anyone can understand the code, take a look at it!

...and it works on Spark!

DistKeras

Image: Joeri Hermans, On Scalable Deep Learning and Parallelizing Gradient Descent

DistKeras Architecture

Trainer

Worker

Worker

Worker

Model

API (AEASGD)

Trainer (AEASGD)

Worker (AEASGD)

1. Churn Prediction
2. Performance optimization

a. Background
b. History
c. Parallelism Types
d. Existing Frameworks
e. Benchmarks

Hardware
Couldn’t use cluster @ Work

Instead, we used AWS

Methods
We used: Averaging, ADAG, AEASGD

Ran on 1, 4, 8 nodes

Experimented with params, settled for defaults

Dataset
Dataset we used is very similar to the one from Vikings

It comes from GDMC 2017
https://cilab.sejong.ac.kr/gdmc2017/

https://cilab.sejong.ac.kr/gdmc2017/index.php/introduction/

1 Machine (CPU)

c4.4xlarge: 16 cores, 30 GB RAM

Training time: 8251 seconds (~2,3 hours) for 10 epochs

Score: 0.958

EMR Cluster

m4.xlarge: 4 cores, 16 GB RAM (c4 is twice more expensive)

Played with many configurations

But we show results only for 4 and 8 worker machines

DistKeras: Test Score / Time

1 Machine (GPU)

Machine Hardware Score Time
p2.xlarge Tesla K80 0.957 2780.87

p3.2xlarge Volta V100 0.957 2037.63

P2 instances

P3 instances (new!)

Used CUDA 9

Cost Efficiency

Type Hardware Price/hour Score Time Cost

CPU c4.4xlarge $0.796 0.958 8251 $1.82

EMR 1 + 4 m4.xlarge 5 x $0.26* 0.957 6734** $2.43

EMR 1 + 8 m4.xlarge 9 x $0.26* 0.956 2933*** $1.91

GPU 1 x p2.xlarge $0.9 0.957 2781 $0.69

GPU 1 x p3.2xlarge $3.06 0.957 2038 $1.73

* price with EMR service cost = 0.06
** 9 epochs to reach this score
*** 7 epochs to reach this score

Take-home Lesson

Got cluster? 1 x GPU

Got extra
$$$?

CPU Cluster
(ADAG)

GPU Cluster

NO

NO

YES

YES

Recommendations

DistKeras + Spark cluster = Quick Setup

Use asynchronous updates (ADAG!)

Watch for loss explosions

Recommendations

Try Deep Learning for your tasks

Start with good problem definition

Keras is a good starting point

Use Dropout, BatchNorm, modern optimizers (like Adam)

Thank you

Plarium Krasnodar is hiring

● Data Engineer

● Data Scientist

hr.team@plarium.com

mailto:hr.team@plarium.com

