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We’'ll cover

Application of Deep Learning to business tasks

Faster training with distributed Deep Learning



Why are we doing it?
Figure out ourselves as we have tasks like this @ work

Share the results with you



@, python
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Why Deep Learning?

e Retail / e-commerce / banking / SaaS / telco / gaming
e NoO

o \oice assistants

o Robots

o Al go-players
e Do |l really need Deep Learning?

E.g. Churn Prediction (o



What is Churn Prediction?

Churn prediction = detect customers who are about to leave




Churn types

Contractual




Churn types

Contractual Non-contractual




Churn problem. Basic definition
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Classical approach

id  f1 |(f2 f£3 .. |fn | label
1 uUs | 130 12 0
2 RU |1 11.0 |0




Classical approach

O 6 6 6 O o d /
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Gradient Boosting

e Combination of weak trees
e Next tree is built to fix errors of the previous one.



Feature calculation is a little problem

id timestamp event_type | event value
1 1508167056 | connect NaN
1 1508168792 | purchase 100

id f1 f2 |f3 fn label
1 us 130 | F -1.2 |0
2 RU 1 M 11.0 O




Feature calculation is a little problem

SUM, COUNT, MIN, MAX, ...
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Feature calculation is a problem
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Feature calculation is a big problem

50 52 5 92 1092 10 = 25000
event aggreqg. aggregqg. lags
types functions  periods

columns

Are the aggregations and periods
chosen correctly?




We need something different

38363 263 - %3¢
-9 -- - XK~ ) ?




Deep Learning goes on stage
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Feature calculation is not a problem

= 230

columns

3
o ()
)

S50 97 9 %

event aggreg.
types functions

aggreq.
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c. Deep learning
d. Practical example
2. Performance optimization




Recurrent Neural Network

Neural Network that accepts sequences as an input
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LSTM and GRU




LSTM and GRU
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LSTM and GRU
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TensorFlow and Keras

. r\
Tensor

e TensorFlow is an ML library from Google
e Flexible, supports LSTM/GRU, has python API



TensorFlow and Keras

Tenso

O

e Keras is a high-level NN APl in Python
e Runs on top of TensorFlow, CNTK, or Theano



d. Practical example
2. Performance optimization




Vikings

e Mobile and browser MMO




Vikings
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Vikings

e Mobile and browser MMO

e Actions:

create and develop clans,
train troops

upgrade heroes and towns
obtain resources

attack others

e Social interactions, competitions
e Tons of data

O O O O O

AV




Vikings dataset
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Vikings dataset

< 2 sessions
Churn
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< 2 weeks
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Vikings dataset

>= 1 session

Churn
----| Input data (3 months) 1 definiton  [-------
(3 weeks)
2017-05-01 2017-08-01 2017-08-23

3 months

Churn is < 2 sessions for the first 3 weeks of August
No newcomers, > 7 game days

Relatively active



Vikings dataset

Churn
---- Input data (3 months) 1 definiton  [-------
(3 weeks)

2017-05-01 2017-08-01 2017-08-23

100k random players, 121 features, 92 days
~9 Gb unarchived



Neural Network Architecture
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Neural Network Architecture
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Let’s code (finally)

X = np.load('X.npy")
y = np.load('y.npy')
X_train, X_test, y_train, y_test =\
train_test_split(X, y, test_size=0.2, random_state=42)
n_hidden, n_feat, n_days = (512, X.shapel[2], X.shapel[l])



Let’s code (finally)

model = Sequential( [

BatchNormalization(input_shape=(n_days, n_feat),
dtype='float32'),

GRU(n_hidden, return_sequences=True),

Dropout(0.5),

BatchNormalization(),

GRU(n_hidden),

Dropout(0.5),

BatchNormalization(),

Dense(2, activation='softmax')

1)



Let's code (finally)

model.compile(loss="'categorical_crossentropy'’,
optimizer=Adam())
model.fit(X_train, y_train, validation_split=0.2,
batch_size=64, epochs=10)
pred = model.predict(X_test)
metrics.roc_auc_score(y_test[:, 1], pred[:, 11)



Let’'s train

0.350 1
0.325 1
0.300 -
0.275 -
0.250 1
0.225 1

0.200 -

— loss
val_loss
? — e
6 7 8




Model performance

ROC-curve
12

10 A

0.5 1

0.6 1

0.4 -

True Positive Rate

0.2 1

0.0 4

—— AUC (area under curve) = 0.97

0.0 0.2 0.4 0.6
False Positive Rate

0.8

10

12



Speed performance

Train on 64000 samples, validate on 16000 samples
Epoch 1/10

64000/64000 [r=============================] - 952s - |0ss: 0.2714 - val_loss: 0.2098
Epoch 2/10
64000/64000 [F=============================] - 945s - Joss: 0.2190 - val _loss: 0.2139
Epoch 9/10
64000/64000 [F=============================] - 940s - loss: 0.2048 - val_loss: 0.2062

Epoch 10/10

64000/64000 [F=============================] - 944s - [0ss: 0.2003 - val_loss: 0.1937

e Training - 16 minutes per epoch, ~3 hours in total
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64000/64000 [F=============================] - 944s - Joss: 0.2003 - val_loss: 0.1937

e Training - 16 minutes per epoch, ~3 hours in total

e Execution - 1 minute for each 10k customers



Speed performance

Train on 64000 samples, validate on 16000 samples

Epoch 1/10

64000/64000 [F=============================] - 9525 - Joss: 0.2714 - val loss: 0.2098
Epoch 2/10

64000/64000 [F=============================] - 9455 - Joss: 0.2190 - val_loss: 0.2139
Epoch 9/10

64000/64000 [F=============================] - 94(0s - loss: 0.2048 - val_loss: 0.2062
Epoch 10/10

64000/64000 [F=============================] - 944s - Joss: 0.2003 - val_loss: 0.1937

e Training - 16 minutes per epoch, ~3 hours in total
e Execution - 1 minute for each 10k customers
e Hardware: 2 x Intel Xeon CPU E5-2620 v4 @ 2.10GHz (16 threads each)



What we’ve learned so far
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Which Types of Tasks Need Speedup?

In Big Data era, the more data = the better.

Models for regular business tasks = lots of data (users x

events)!

Speech/image recognition, physics modelling = lots of data



So how do we make
training process
faster?



History
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Jeff Dean



Large Scale Distributed Deep Networks

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng
{jeff, gcorrado}@google.com

Google Inc., Mountain View, CA

Abstract

Recent work in unsupervised feature learning and deep learning has shown that be-
ing able to train large models can dramatically improve performance. In this paper,
we consider the problem of training a deep network with billions of parameters
using tens of thousands of CPU cores. We have developed a software framework
called DistBelief that can utilize computing clusters with thousands of machines to
train large models. Within this framework, we have developed two algorithms for
large-scale distributed training: (i) Downpour SGD, an asynchronous stochastic
gradient descent procedure supporting a large number of model replicas, and (ii)
Sandblaster, a framework that supports a variety of distributed batch optimization
procedures, including a distributed implementation of L-BFGS. Downpour SGD
and Sandblaster L-BFGS both increase the scale and speed of deep network train-
ing. We have successfully used our system to train a deep network 30x larger than
previously reported in the literature, and achieves state-of-the-art performance on
ImageNet, a visual object recognition task with 16 million images and 21k cate-
gories. We show that these same techniques dramatically accelerate the training

T 1 PR, ., NSRS . (N SEEm—" a—— S, J————————— e, [N, . | P —



History

This paper introduced a new approaches

1. Downpour SGD
2. Sandblaster L-BFGS

...These are Asynchronous Data Parallelism algorithms!




c. Parallelism Types
d. Existing Frameworks
e. Benchmarks




Model Parallelism

Parallelism Types

Data Parallelism




Model Parallelism

Tricky to implement for fully connected networks:

e Layers will have to communicate across different devices

e You have to understand you model very well



Let’'s settle on
Data Parallelism



How do we
synchronize all
models?



Parameter Server W = W - HAw

][ [

/Aw H \\

Model [::][::] [::J[::]
e sllsallas

Data
Shards

Architecture for Data Parallelism




Data Parallelism: Synchronous
Upsides

e Potentially bigger learning rates

Downsides:

e Limited parallelism
e Usually slower



Data Parallelism: Asynchronous
Upsides:

e Better Scalability
e Better Cluster Load

Downsides:

e “the straggler problem” — due to staleness of coefficients
e not converging sometimes



REVISITING DISTRIBUTED SYNCHRONOUS SGD

Jianmin Chen, Rajat Monga, Samy Bengio & Rafal Jozefowicz
Google Brain
Mountain View, CA, USA

{jmchen, rajatmonga, bengio, rafalj}@google .com

1 THE NEED FOR A LARGE SCALE DEEP LEARNING INFRASTRUCTURE

The recent success of deep learning approaches for domains like speech recognition (Hinton et al.,
2012) and computer vision (Ioffe & Szegedy, 2015) stems from many algorithmic improvements
but also from the fact that the size of available training data has grown significantly over the years,
together with the computing power, in terms of both CPUs and GPUs.

While a single GPU often provides algorithmic simplicity and speed up to a given scale of data and
model, there exist an operating point where a distributed implementation of training algorithms for
deep architectures becomes necessary.

2 ASYNCHRONOUS STOCHASTIC GRADIENT DESCENT

In 2012, Dean et al. (2012) presented their approach for a distributed stochastic gradient descent
algorithm. It consists of two main ingredients. First, the parameters of the model can be distributed
on multiple servers, depending on the architecture. This set of servers are called the parameter
servers. Second, there can be multiple workers processing data in parallel and communicating with
the parameter servers. Each worker processes a mini-batch of data independently of the other ones,
as follows:

o it fetches from the parameter servers the most up-to-date parameters of the model needed
to process the current mini-batch;
o it then computes gradients of the loss with respect to these parameters;

o finally, these gradients are sent back to the parameter servers, which then updates the model

VS

Master Thesis

ON SCALABLE DEEP LEARNING AND PARALLELIZING GRADIENT DESCENT

Joeri R. Hermans

Master Thesis DKE 17-11

Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science of Artificial Intelligence

Thesis Committee:
Dr. Gerasimos Spanakis
Dr. Rico Mockel

Maastricht University
Faculty of Humanities and Sciences
Department of Data Science & Knowledge Engineering
Maastricht, The Netherlands
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Alright, let's use
TF In distributed
mode...



TensorFlow

DEV SUMMIT 2017




Hands-On
Machine Learning
with Scikit-Learn
& Tensorkloyy

CONCEPTS, TOOLS, AND TECHNIQUES
TO BUILD INTELLIGENT SYSTEMS

Jupyter
N’

[ ] sy s
Aurélien Géron




Or we had better find an alternative?

TF Distributed is quite tedious to configure

You have to run it manually



SAPACHE



YAaHOO!

https://github.com/yahoo/TensorFlowOnSpark



https://github.com/yahoo/TensorFlowOnSpark

DEEPLEARNING4)

https://deeplearning4j.org/



https://deeplearning4j.org/

A better alternative
would be...



https://github.com/cerndb/dist-keras



https://github.com/cerndb/dist-keras

DistKeras

Ll cerndb / dist-keras @Watch~ 27  JUnstar 277  ¥Fork 70

<> Code Issues 3 Pull requests 1 Projects 0 Wiki Insights

Distributed Deep Learning, with a focus on distributed training, using Keras and Apache Spark.
http://joerihermans.com/work/distribu...

machine-learning deep-learning apache-spark data-parallelism distributed-optimizers keras optimization-algorithms tensorflow
data-science hadoop
P 1,123 commits ¥ 3 branches © 5 releases 42 5 contributors sfs GPL-3.0

Branch: master v New pull request Create new file = Upload files = Find file Clone or download ~
. JoeriHermans committed on GitHub Merge pull request #29 from Expedialnc/master - Latest commit 587be91 on 10 Sep
in distkeras remove debugging messages 2 months ago
i docs add metrics argument in trainers and workers to support user-supplied... 5 months ago
8 examples Add distributed parsing of Numpy files on HDFS 6 months ago

BEm rocnlirrac AAdA firet hlam nAact Q manthe s~



Joeri Hermans + CERN = AWESOMENESS



DistKeras

Well-written
Jupyter Notebooks to get you started

Anyone can understand the code, take a look at it!

...and it works on Spark!



Image: Joeri Hermans, On Scalable Deep Learning and Parallelizing Gradient Descent



DistKeras Architecture

Trainer

Worker

Tl

Worker

Tl

Mode |

Worker




API (AEASGD)

trainer = AEASGD(keras_model=model, worker_optimizer=optimizer,
loss=1oss, num_workers=num_workers,
batch_size=BATCH_SIZE,
features_col="features", label col="1label",
num_epoch=num_epoch, communication_window=32,
rho=5.0, learning_rate=0.01)

trainer.set_parallelism_factor(1)
trained_model = trainer.train(training_set)



Trainer (AEASGD)

parallelism = self.parallelism_factor * self.num_workers
# Check if we need to repartition the dataframe.
if num_partitions >= parallelism:
dataframe = dataframe.coalesce(parallelism)
else:
dataframe = dataframe.repartition(parallelism)
# Start the training procedure.
self.record_training_start()
# Iterate through the epochs.
self.history = dataframe.rdd.mapPartitionsWithIndex(worker.train).collect()
# End the training procedure.
self.record_training_end()
# Stop the communication service.
self.stop_service()

return self.parameter_server.get_model()



Worker (AEASGL

def optimize(self):
"""Specific training procedure for AEASGD."""
while True:
X, Y = self.get_next_minibatch()
if self.iteration % self.communication_window ==
self.pull()
W = np.asarray(self.model.get_weights())
E = self.alpha *x (W - self.center_variable)
W=W-E
self.model.set_weights(W)
self.commit(E)
h = self.model.train_on_batch(X, Y)
self.add_history(h)
self.iteration += 1

p
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Hardware
Couldn’t use cluster @ Work
Instead, we used AWS



Methods
We used: Averaging, ADAG, AEASGD

Ran on 1, 4, 8 nodes

Experimented with params, settled for defaults



Dataset

Dataset we used is very similar to the one from Vikings

It comes from GDMC 2017
https://cilab.sejong.ac.kr/gdmc2017/



https://cilab.sejong.ac.kr/gdmc2017/index.php/introduction/

1 Machine (CPU)

c4.4xlarge: 16 cores, 30 GB RAM
Training time: 8251 seconds (~2,3 hours) for 10 epochs

Score: 0.958



EMR Cluster

m4.xlarge: 4 cores, 16 GB RAM (c4 is twice more expensive)

Played with many configurations

But we show results only for 4 and 8 worker machines



DistKeras: Test Score / Time

roc auc test score

0.955

0.950

0.945

0.940

0.935

0.930

1000

2000

3000

4000
time

5000

6000

7000

— 8w AEASGD
— 8w Averaging
— 8w ADAG

4w AEASGD
4w Averaging
4w ADAG



1 Machine (GPU)

P2 instances

P3 instances (new!)

Used CUDA 9
Machine Hardware
p2.xlarge Tesla K80

p3.2xlarge Volta V100

Score
0.957
0.957

Time
2780.87
2037.63



Cost Efficiency

Type | Hardware Price/hour

CPU c4.4xlarge $0.796
EMR 1+ 4 m4.xlarge 5 x $0.26*
EMR 1+ 8 m4.xlarge 9 x $0.26*
GPU 1 x p2.xlarge $0.9

GPU 1 x p3.2xlarge | $3.06

* price with EMR service cost = 0.06
** 9 epochs to reach this score
*** 7 epochs to reach this score

Score

0.958
0.957
0.956
0.957
0.957

Time

8251
6734™*
2933***
2781
2038

Cost

$1.82
$2.43
$1.91
$0.69
$1.73



Take-home Lesson

Got cluster?

NO

YES l

Got extra

$$57?

NO

1 x GPU

YES

CPU Cluster
(ADAG)

GPU Cluster




Recommendations

DistKeras + Spark cluster = Quick Setup
Use asynchronous updates (ADAG!)

Watch for loss explosions



Recommendations

Try Deep Learning for your tasks
Start with good problem definition
Keras Is a good starting point

Use Dropout, BatchNorm, modern optimizers (like Adam)



Thank you



Plarium Krasnodar is hiring

e Data Engineer

e Data Scientist

hr.team@plarium.com



mailto:hr.team@plarium.com

