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Agenda
• NFV intro

• NSB (Prox, Yardstick)

• Benchmarking

• Examples (mini case studies)

• Virtualized performance profiling

• Profiling guest

• Profiling in host

• Utilizing best instruction sets in private clouds (EPA or bottom up 
approach

• VNFs in containers vs VMs.
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NFV software transformation

First “Ready” 
then 
“Resilient”
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NFV config options for Networking Data Path
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NSB Methodology – vnf performance 
benchmarking
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Methodology: Vnf comparison through performance 
benchmarking
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Physical Network Topology and SW BOM

For SW based Traffic generators
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NFVI Characterization Tools - PROX
Workloads: developed in collaboration with SP partners

• Workloads exercise NFVI HW and SW features identified 
as performance-critical for VNFs and SFCs

• Workloads implement “kernels” of VNF/SFC functionality

• Run in PROX using different configuration files

Traffic generation and measurement (PROX-gen)

• Generates traffic that is specific to each workload

• Packet size and arrival distribution is configurable

• Automation interface provided for DATS

DATS: Dataplane Automated Testing System

• Scripts to automatically drive, measure, report multiple 
dataplane test cases.

• Measurements with 0 packet loss (according to 
RFC2544)

• Workload-specific Key Performance Indicator (KPI) used 
as summary statistic

• Output is an automatically generated report

• Enables faster, more reliable test case execution
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Prox screenshot

• Open source project at 01.org, github (under OPNFV)

• On top of DPDK and prox, developer can combine building blocks in a text config file to 
create DPDK performance demonstrators/custom traffic gen/test tools
• Developer can implement additional building blocks (complimenting available blocks:
Gen,lat,nop,acl,ipsec,qos,qinq,classify,cgnat,gre,route,police,lb*,etc)
• Convenient NCURSES GUI for live stats monitoring / configuration
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Prox case study 1

• VNF Latency PCI-Passthrough

• VNF Jitter PCI-Passthrough

• VNF Latency SR-IOV

• VNF Jitter SR-IOV

Results, μs:
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VNF in VM
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Case study 2 – SKL-SP performance

• Xeon Platinum 8168 @2.7Ghz, RHEL 7.2, Niantic NICs.

• ~2X performance improvement over BDW-EP on IPSec workload: ~20% from 
IPC increase, ~80% from SIMD optimizations in DPDK-17.05 and Intel 
multibuffer crypto library.

• Mhz/Kpkt, @IMIX pkt rate:

• At IMIX full line rate (3940Kpkt), need 2 encrypter cores (+ LB core), 2 
decrypter cores. Scales very well with MHZ and cores.

• When using integrated QAT, need 1 core for encrypt and 1 core for decrypt
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CPU/system profiling tools

• Linux perf – de facto standard now. PMU sampling in NMIs

• Intel PCM – PMU counting mode, uncore PMU

• Intel Vtune – standalone or as perf results viewer. Best viewer for x86 PMU 
sampling. Custom collectors with IPT support, stack sampling support; or frontend 
for perf



Profiling in host
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• # perf kvm --host –guest …  -a record –o perf.data

• Get /proc/kallsyms, /proc/modules from guest first.

• Read results with perf or Vtune, or collect with Vtune (will invoke perf kvm collector).

• # Intel pcm-core, pcm-pcie, pcm-memory, pcm-numa, pcm-tsx, pcm-power, pcm-sensors.

• Watch for excessive NUMA, memory, PCI traffic

• Any way, you only see detailed host data,

kernel guest data [single guest!], 

and aggregated user mode guest data.

• Why bother - ? 

Because we can read and sample all 

cores and uncore PMU counters!



Profiling in guest

16

#perf list       // Run in guest

– L1-dcache-loads [Hardware cache event] GOOD

– Only cpu-clock,etc [Software event] BAD. Make sure qemu –cpu host, OpenStack config
capabilities:vcpu_model.features=arch_perfmon

# perf record –a –e instructions,ref-cycles,LLC-loads,LLC-load-misses,LLC-stores,LLC-store-
misses,… sleep 60

• Open results (perf.data) in perf viewer or import to Vtune (rename to *perf).

• You don’t see all PMU events – KVM only passes a dozen most important ones to guests

• All time sampling profiling methods would also work..



Utilizing best ISA in guests

• VNFs (Virtual Network Function) vendors have to deploy to private clouds, often configured 
to spoof CPUids (Sandy Bridge as default is common). So they have to run with “least 
common denominator” architecture settings, that is not very efficient.

• Enhanced Platform Awareness approach – top down, configure guests with real CPUIDs, use 
orchestration to start binaries compiled for the best supported instruction set.

• Bottom up approach – use a small (in LOC) tool that reveals a physical CPU model when 
running under a hypervisor that hides/spoofs real CPUID to guests. 

• Run a tool, get a real physical CPU model, select the right binary (with AVX, AVX2, AES-NI, 
AVX-512 support)
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Description

• Virtio in Containers is a new approach to high-speed networking for 
containers.

• In a VM, QEMU helps with device emulations and interaction with 
the backend.

• In containers, we don’t have QEMU:

• We could introduce a kernel module to fulfil the same function 
as QEMU, but we’re already trying to remove the existing out-of-
tree kernel modules from DPDK.

• Instead, all of the work is done in the DPDK PMD driver. We 
present virtio as a virtual device, just like the way that Ring, 
PCAP, or other virtual devices are used in DPDK. The control 
message are also handled through the DPDK driver.
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Download links, docs

• Intel PCM - http://www.intel.com/software/pcm

• NSB/Yardstick - https://wiki.opnfv.org/display/yardstick/Yardstick

• Prox - https://01.org/intel-data-plane-performance-demonstrators

• Source, as a part of OPNFV: https://github.com/opnfv/samplevnf/tree/master/VNFs/DPPD-PROX

• Cisco Trex - https://trex-tgn.cisco.com/

• Linux perf - https://perf.wiki.kernel.org/index.php/Main_Page

• Intel Vtune - https://software.intel.com/en-us/intel-vtune-amplifier-xe/

• CPUvirt2phys - https://software.intel.com/en-us/articles/how-to-tell-cpu-model-when-
running-under-hypervisor-that-spoofs-cpuid
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