
Benchmarking and tuning NFV, using
Yardstick/NSB, OVS, prox, perf, Intel PCM

Alexander Komarov

Application Engineer, Intel Software and Services Group

3.11.2017

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune,
Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

2

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality,
or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer
to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

Agenda
• NFV intro

• NSB (Prox, Yardstick)

• Benchmarking

• Examples (mini case studies)

• Virtualized performance profiling

• Profiling guest

• Profiling in host

• Utilizing best instruction sets in private clouds (EPA or bottom up
approach

• VNFs in containers vs VMs.

3

NFV software transformation

First “Ready”
then
“Resilient”

4

NFV config options for Networking Data Path

Pass-
Through

User SpaceUser Space

vSwitch

User Space

NIC
DPDK and SR-IOV
Support Required

NIC NIC NIC
DPDK Support

Required

NIC
DPDK Support

Required

NIC
SR-IOV Support

Required

NIC
DPDK Support

Required

Enterprise
IT

Perf Testing
Required

Telecom NFV
Perf Testing

Required

Trusted
VNFs

ONLY

Telecom NFV
(Requires Limited East-West

Traffic)

User Space

qemu Layer

Kernel

eth0

VNF

DPDK PMD

DPDK enabled App

User Space

Kernel

eth0

qemu Layer

VNF

vHost

Application

vNIC0

qemu Layer

VNF

vHost

Application

vNIC0

Kernel

eth0

User Space

Kernel

eth0

qemu Layer

VNF

DPDK PMD

DPDK enabled App

vSwitch

vHost
tap

vSwitch

vHost
tap

User Space

qemu Layer

Kernel

eth0

VNF

DPDK PMD

DPDK enabled App

qemu Layer

VNF

Application

VF

qemu Layer

VNF

DPDK PMD

DPDK enabled App

VF

PF PF

VEB VEB

Shared Memory

vSwitch + DPDK vSwitch + DPDK vSwitch + DPDK
DPDK PMD DPDK PMD DPDK PMD

5

NSB Methodology – vnf performance
benchmarking

6

Methodology: Vnf comparison through performance
benchmarking

Native Linux Env

Network application in multiporcess

IA Server– 2S-CPU with 4DDR4 per Socket
& x8, x16 PCIe Gen-3 I/O

NIC

Host Kernel Eth
Driver

Igb_uio

pmd

Dpdk stack

VNF application

Socket i/f

Control plane /
management
applications

Int

1GbE NIC

Mgmt

Stand alone Virtualized Env

Network application with multiple VMs

IA Server– 2S-CPU with 4DDR4 per Socket
& x8, x16 PCIe Gen-3 I/O

Host Kernel with KVM Eth
Driver

pmd

Dpdk stack

VNF application

Socket i/f

Control plane /
management
applications

Host OS –
User space
application

Igb_uio Eth drvqemu

IOMMU

Int Mgmt

NIC 1GbE NIC

Managed virtualized Infra Env

OVS-DPDK

Network application with multiple VMs

IA Server– 2S-CPU with 4DDR4 per Socket
& x8, x16 PCIe Gen-3 I/O

Host Kernel
with KVM Eth

Driver

VNF application

Socket i/f

Control plane /
management
applications

Host OS –
User space
application

Igb_uio vritIO

qemu

IOMMU

Int Mgmt

10GbE NIC 1GbE NIC

br- eth

br-int

virtIO
pmd

Dpdk stack

Igb_uio

Evaluate both scale-up and scale-out performance data

7

Physical Network Topology and SW BOM

For SW based Traffic generators

10 Gbe SFP
Switch

OVS 2.7

17.04

QEMU 2.5

Ubuntu 16.04 LTS

Industry Standard Server Based
on Intel® Architecture

NSB 16.04 based on YardStick

TREX 2.05 AB 2.4.18-2ubuntu3.1

2x10Gbe SFP
connections

2x10Gbe SFP
connections

2x10Gbe
SFP

TOR 1Gbe Cisco
Switch – Internet
connection Test

Harness

System Under Test

TGEN 2 L4 Replay

Network topology SW bom

NGiNX 1.1.10 Pktgen 3.0.14

Supported traffic
generators
• TREX
• Pktgen
• Ping
• Prox gen
• Benchmark/NGiNX

8

NFVI Characterization Tools - PROX
Workloads: developed in collaboration with SP partners

• Workloads exercise NFVI HW and SW features identified
as performance-critical for VNFs and SFCs

• Workloads implement “kernels” of VNF/SFC functionality

• Run in PROX using different configuration files

Traffic generation and measurement (PROX-gen)

• Generates traffic that is specific to each workload

• Packet size and arrival distribution is configurable

• Automation interface provided for DATS

DATS: Dataplane Automated Testing System

• Scripts to automatically drive, measure, report multiple
dataplane test cases.

• Measurements with 0 packet loss (according to
RFC2544)

• Workload-specific Key Performance Indicator (KPI) used
as summary statistic

• Output is an automatically generated report

• Enables faster, more reliable test case execution

9

Prox screenshot

• Open source project at 01.org, github (under OPNFV)

• On top of DPDK and prox, developer can combine building blocks in a text config file to
create DPDK performance demonstrators/custom traffic gen/test tools
• Developer can implement additional building blocks (complimenting available blocks:
Gen,lat,nop,acl,ipsec,qos,qinq,classify,cgnat,gre,route,police,lb*,etc)
• Convenient NCURSES GUI for live stats monitoring / configuration

10

Prox case study 1

• VNF Latency PCI-Passthrough

• VNF Jitter PCI-Passthrough

• VNF Latency SR-IOV

• VNF Jitter SR-IOV

Results, μs:

10M small packets (64 bytes) l3 fwd VNF

simple fwd,
native

l3fwd,
native

l3fwd, PCI
passthrough

l3fwd,
SR-IOV

min 14 30 45 40

avg 30 64 74 69

max 90 145 160 160

Prox gen,
timestamp

Prox lat,
hystogram

SUT, L3fwd
VNF in VM

11

LB
IMIX

Prox
gen

Ipsec
encrypt

Ipsec
encrypt

Ipsec
encrypt

Ipsec
encrypt

Ipsec decrypt

Ipsec decrypt

Ipsec decrypt

Ipsec decrypt

TX
dev

Case study 2 – Prox setup

12

Case study 2 – SKL-SP performance

• Xeon Platinum 8168 @2.7Ghz, RHEL 7.2, Niantic NICs.

• ~2X performance improvement over BDW-EP on IPSec workload: ~20% from
IPC increase, ~80% from SIMD optimizations in DPDK-17.05 and Intel
multibuffer crypto library.

• Mhz/Kpkt, @IMIX pkt rate:

• At IMIX full line rate (3940Kpkt), need 2 encrypter cores (+ LB core), 2
decrypter cores. Scales very well with MHZ and cores.

• When using integrated QAT, need 1 core for encrypt and 1 core for decrypt

BDW-EP SKL-SP

3.4 1.5

0

2

4

6

8

10

12

0 500 1000 1500 2000

1 core encrypt pkt size rate

Pkt, bytes

Freq, Mhz

13

14

CPU/system profiling tools

• Linux perf – de facto standard now. PMU sampling in NMIs

• Intel PCM – PMU counting mode, uncore PMU

• Intel Vtune – standalone or as perf results viewer. Best viewer for x86 PMU
sampling. Custom collectors with IPT support, stack sampling support; or frontend
for perf

Profiling in host

15

• # perf kvm --host –guest … -a record –o perf.data

• Get /proc/kallsyms, /proc/modules from guest first.

• Read results with perf or Vtune, or collect with Vtune (will invoke perf kvm collector).

• # Intel pcm-core, pcm-pcie, pcm-memory, pcm-numa, pcm-tsx, pcm-power, pcm-sensors.

• Watch for excessive NUMA, memory, PCI traffic

• Any way, you only see detailed host data,

kernel guest data [single guest!],

and aggregated user mode guest data.

• Why bother - ?

Because we can read and sample all

cores and uncore PMU counters!

Profiling in guest

16

#perf list // Run in guest

– L1-dcache-loads [Hardware cache event] GOOD

– Only cpu-clock,etc [Software event] BAD. Make sure qemu –cpu host, OpenStack config
capabilities:vcpu_model.features=arch_perfmon

perf record –a –e instructions,ref-cycles,LLC-loads,LLC-load-misses,LLC-stores,LLC-store-
misses,… sleep 60

• Open results (perf.data) in perf viewer or import to Vtune (rename to *perf).

• You don’t see all PMU events – KVM only passes a dozen most important ones to guests

• All time sampling profiling methods would also work..

Utilizing best ISA in guests

• VNFs (Virtual Network Function) vendors have to deploy to private clouds, often configured
to spoof CPUids (Sandy Bridge as default is common). So they have to run with “least
common denominator” architecture settings, that is not very efficient.

• Enhanced Platform Awareness approach – top down, configure guests with real CPUIDs, use
orchestration to start binaries compiled for the best supported instruction set.

• Bottom up approach – use a small (in LOC) tool that reveals a physical CPU model when
running under a hypervisor that hides/spoofs real CPUID to guests.

• Run a tool, get a real physical CPU model, select the right binary (with AVX, AVX2, AES-NI,
AVX-512 support)

17

18

HOST

C0 C1
…

HOST

HOST

C0 C1 Cn…

A B

C D

Cn
vSwitch

App0 App1

HOST

App0 App1

vSwitchVM-Based
Solutions

Container-
Based

Solutions

Appn
…

Appn
…

SR-IOV Virtio

VM & Container Usage Models in NFV

19

Description

• Virtio in Containers is a new approach to high-speed networking for
containers.

• In a VM, QEMU helps with device emulations and interaction with
the backend.

• In containers, we don’t have QEMU:

• We could introduce a kernel module to fulfil the same function
as QEMU, but we’re already trying to remove the existing out-of-
tree kernel modules from DPDK.

• Instead, all of the work is done in the DPDK PMD driver. We
present virtio as a virtual device, just like the way that Ring,
PCAP, or other virtual devices are used in DPDK. The control
message are also handled through the DPDK driver.

Virtio in Containers

Container/App

vSwitch

v
h
o
s
t

DPDK

VIRTIO PMD

v
irtio

Socket
/tmp/xx.socket

ETHDEV

VIRTI
O

VIRTIO-USER

vhost-user
adapter

PCI device Virtual
device

Download links, docs

• Intel PCM - http://www.intel.com/software/pcm

• NSB/Yardstick - https://wiki.opnfv.org/display/yardstick/Yardstick

• Prox - https://01.org/intel-data-plane-performance-demonstrators

• Source, as a part of OPNFV: https://github.com/opnfv/samplevnf/tree/master/VNFs/DPPD-PROX

• Cisco Trex - https://trex-tgn.cisco.com/

• Linux perf - https://perf.wiki.kernel.org/index.php/Main_Page

• Intel Vtune - https://software.intel.com/en-us/intel-vtune-amplifier-xe/

• CPUvirt2phys - https://software.intel.com/en-us/articles/how-to-tell-cpu-model-when-
running-under-hypervisor-that-spoofs-cpuid

20

http://www.intel.com/software/pcm
https://wiki.opnfv.org/display/yardstick/Yardstick
https://01.org/intel-data-plane-performance-demonstrators
https://github.com/opnfv/samplevnf/tree/master/VNFs/DPPD-PROX
https://trex-tgn.cisco.com/
https://perf.wiki.kernel.org/index.php/Main_Page
https://software.intel.com/en-us/intel-vtune-amplifier-xe/
https://software.intel.com/en-us/articles/how-to-tell-cpu-model-when-running-under-hypervisor-that-spoofs-cpuid

