

Benchmarking and tuning NFV, using Yardstick/NSB, OVS, prox, perf, Intel PCM

Alexander Komarov

Application Engineer, Intel Software and Services Group

3.11.2017

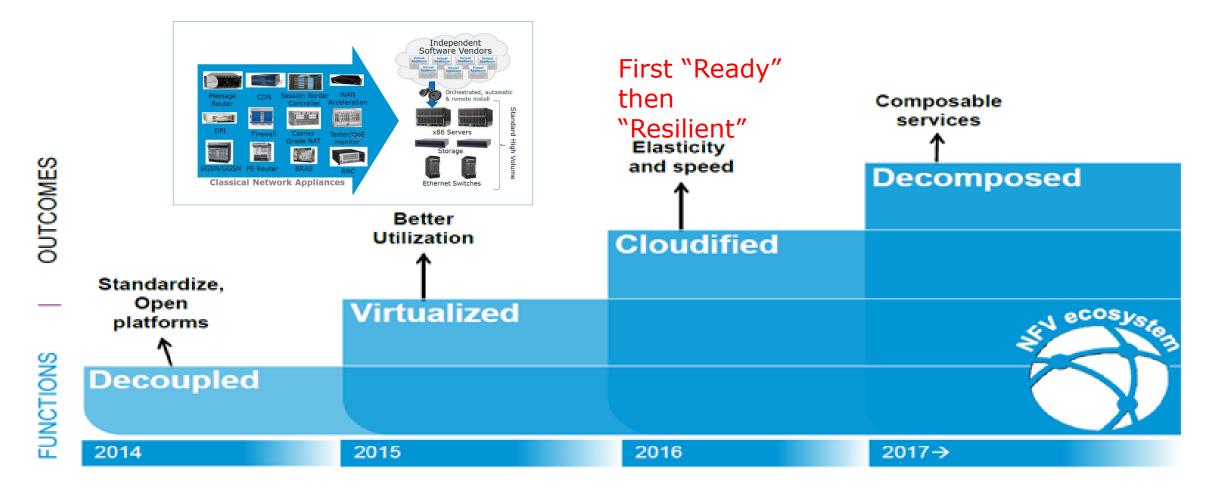
Legal Disclaimer & Optimization Notice

- INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
- Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
- Copyright © 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

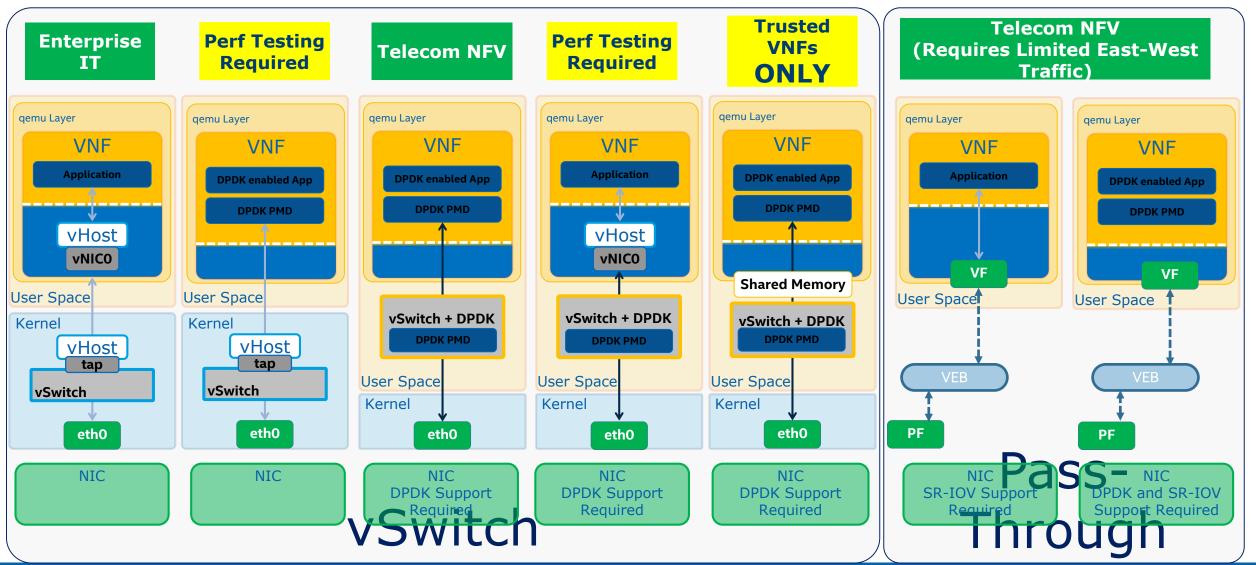
Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessordependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804



- NFV intro
- NSB (Prox, Yardstick)
 - Benchmarking
 - Examples (mini case studies)
- Virtualized performance profiling
 - Profiling guest
 - Profiling in host
- Utilizing best instruction sets in private clouds (EPA or bottom up approach
- VNFs in containers vs VMs.

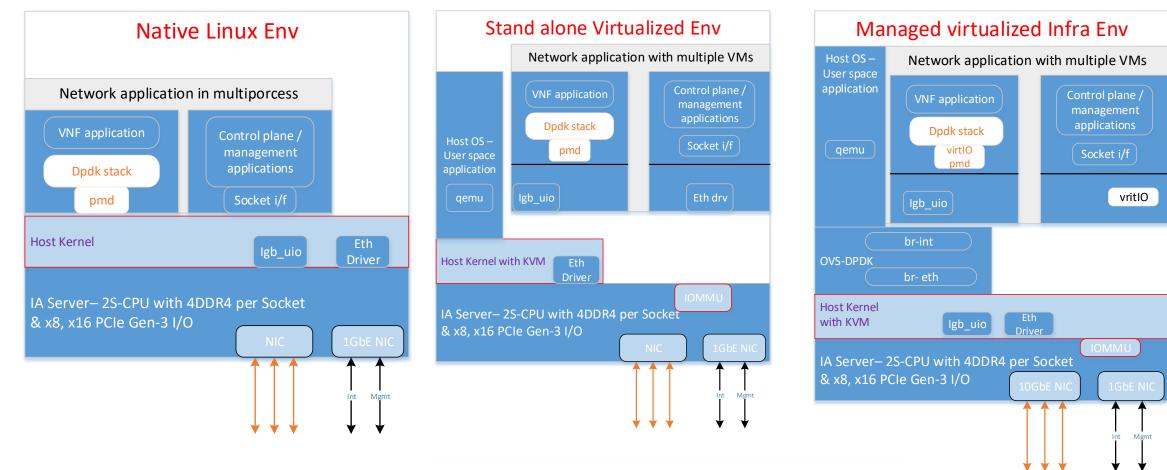


NFV software transformation

NFV config options for Networking Data Path

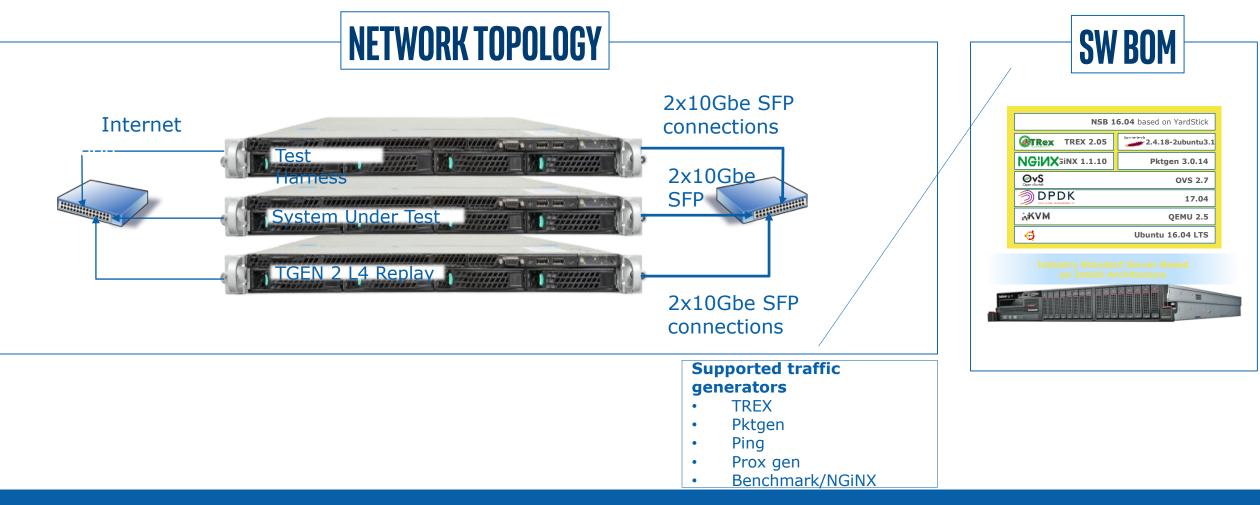
NSB Methodology – vnf performance benchmarking

VNF performance benchmarking


Native Linux environment Standalone Virtualized environment

Managed virtualized environment (e.g. OpenStack) Evaluate both scaleup and scale-out performance data

VNFs performance graphs for both scale-up and scale-out in all three environments Collect KPIs: Network KPIs, VNF KPIs and NFVi KPIs Test Infrastructure: Standard test framework for all 3 environments

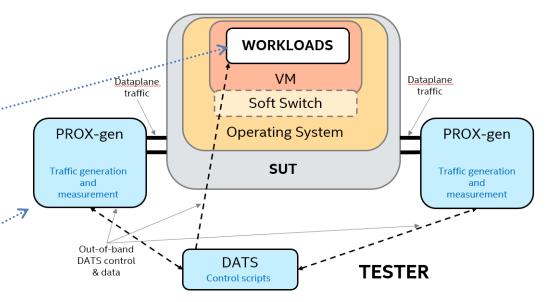

Methodology: Vnf comparison through performance benchmarking

EVALUATE BOTH SCALE-UP AND SCALE-OUT PERFORMANCE DATA

Physical Network Topology and SW BOM FOR SW BASED TRAFFIC GENERATORS

NFVI Characterization Tools - PROX

Workloads: developed in collaboration with SP partners

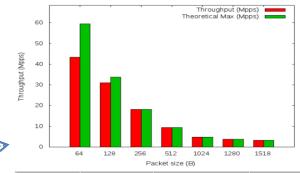

- Workloads exercise NFVI HW and SW features identified as performance-critical for VNFs and SFCs
- Workloads implement "kernels" of VNF/SFC functionality
- Run in PROX using different configuration files

Traffic generation and measurement (PROX-gen)

- Generates traffic that is specific to each workload
- Packet size and arrival distribution is configurable
- Automation interface provided for DATS

DATS: Dataplane Automated Testing System

- Scripts to automatically drive, measure, report multiple dataplane test cases.
- Measurements with 0 packet loss (according to RFC2544)
- Workload-specific Key Performance Indicator (KPI) used as summary statistic
- Output is an automatically generated report.
- Enables faster, more reliable test case execution


Port forwarding without touching packets

Description

The application will take packets in from one port and forward them unmodified to another port. This use case is not representing any real use case but it is a good start to do a sanity check of the environment.

The KPI is the number of packets per second for 64 byte packets with an accepted minimal packet loss (zero, no packet loss).

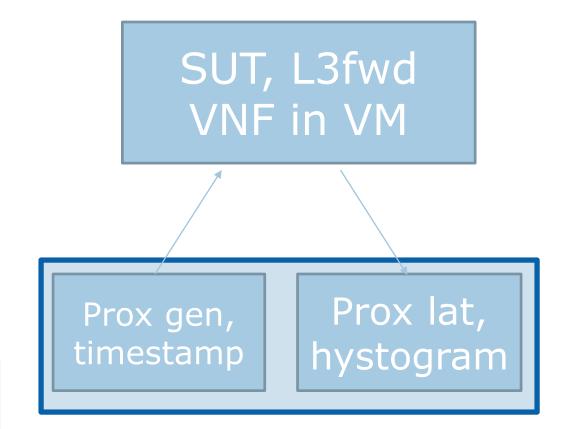
Result

Packet size (B)	Throughput (Mpps)	Theoretical Max (Mpps)	Duration (s)		
64	43.3945123314	59.5238095238	120.278173923		
128	30.9998391896	33.7837837838	120.292181015		
256	18.1156148588	18.115942029	15.035173893		
512	9.39842704915	9.3984962406	15.0372900963		
1024	4.78927200203	4.78927203065	15.0380678177		
1280	3.84615146073	3.84615384615	15.0364170074		
1518	3.25097532563	3.25097529259	15.0354731083		

Prox screenshot

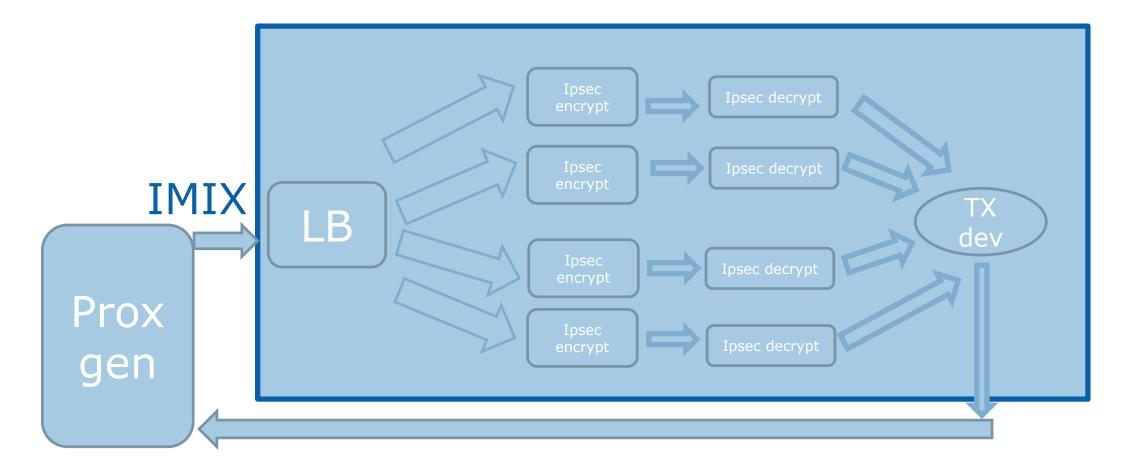
- Open source project at 01.org, github (under OPNFV)
- On top of DPDK and prox, developer can combine building blocks in a text config file to create DPDK performance demonstrators/custom traffic gen/test tools
- Developer can implement additional building blocks (complimenting available blocks: Gen, lat, nop, acl, ipsec, gos, ging, classify, cgnat, gre, route, police, lb*, etc)
- Convenient NCURSES GUI for live stats monitoring / configuration

	prox v0.19: esp		12 up
<mark>1 tasks</mark> 2 ports 3 mem 4 lat 5 ring			
Host pps rx: 0 tx: 0 diff: 0	avg rx: tx:	%: -nan	
NICs pps rx: 0 tx: 0 err: 0	avg rx: tx:	err: %:	
Core/Task Port ID/Ring Name	Statistics per second		Total Statisti
Nb Name Mode RX TX Idle (%)	RX (k) TX (k) Drop (k)	CPP Clk (GHz)	RX TX
2/0 esp_enc esp_enc 1 A 60.89	0 0 0	0 0.000	0 0
3/0 esp_dec esp_dec A 0 66.15	0 0 0	0 0.000	ΘΘ
Core 2: RX port 1 (queue 0) ==> TX ring 0x7f4ab29c6080			
Core 3: RX ring[0,0] 0x7f4ab29c6080 ==> TX port 0 (queu	ie 0)		
Started with 2 warnings, last 2 warnings:			
warn : System did not report numa_node for device 0000:	00:03.0		
warn : System did not report numa_node for device 0000:	00:08.0		
Starting cores: 2, 3			
Starting core 2 (all tasks)			
Starting core 3 (all tasks)			
Entering main loop on core 2			
Entering main loop on core 3			
Waiting for core 2 to start OK			
Waiting for core 3 to start OK			

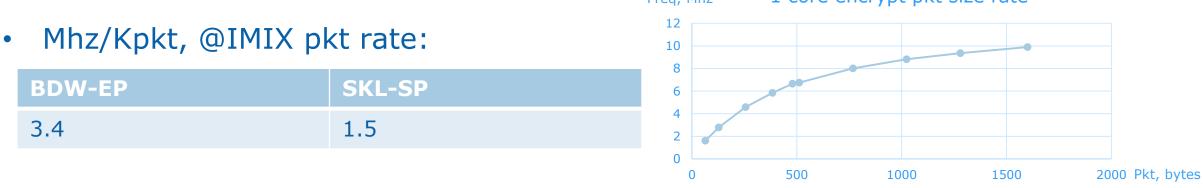


Prox case study 1

- VNF Latency PCI-Passthrough
- VNF Jitter PCI-Passthrough
- VNF Latency SR-IOV
- VNF Jitter SR-IOV


Results, µs:

	10M small pa	ckets (64 b	ytes) 13 fwd VNF	
	simple fwd, native			l3fwd, SR-IOV
min	14	30	45	40
avg	30	64	74	69
max	90	145	160	160


Case study 2 – Prox setup

Case study 2 – SKL-SP performance

- Xeon Platinum 8168 @2.7Ghz, RHEL 7.2, Niantic NICs.
- ~2X performance improvement over BDW-EP on IPSec workload: ~20% from IPC increase, ~80% from SIMD optimizations in DPDK-17.05 and Intel multibuffer crypto library.

- At IMIX full line rate (3940Kpkt), need 2 encrypter cores (+ LB core), 2 decrypter cores. Scales very well with MHZ and cores.
- When using integrated QAT, need 1 core for encrypt and 1 core for decrypt

CPU/system profiling tools

- Linux perf de facto standard now. PMU sampling in NMIs
- Intel PCM PMU counting mode, uncore PMU
- Intel Vtune standalone or as perf results viewer. Best viewer for x86 PMU sampling. Custom collectors with IPT support, stack sampling support; or frontend for perf

[root@localhos							
Processor Cou			oring util:	ity			
Number of phys.	ical cores: 4	18					
Number of logi	cal cores: 48	3					
Number of onli	ne logical co	pres: 48					
Threads (logic	al cores) per	r physical c	ore: 1				
Num sockets: 2							
Physical cores	per socket:	24					
Core PMU (perfi							
Number of core			le) counter	rs: 8			
Width of gener							
Number of core			TOT TO DIE.				
Width of fixed							
Nominal core f							
			Packago min	nimum power: 00	Watt: Dad	kano mavimu	m power: 413 Watt;
				al number of 6			
				al number of 6			
Socket 0	nory control	ters detecte	a with for	at number of o	channets.	5 QPI ports	detected.
Max QPI link 0	speed: 23.4	GRytes/seco	nd (10 4 G	T/second)			
Max QPI link 1							
Max QPI link 2							
Socket 1							
Max QPI link 0	speed: 23.4	GBytes/seco	nd (10.4 G	T/second)			
Max QPI link 1							
Max QPI link 2	speed: 21.6	GBytes/seco	nd (9.6 GT,	/second)			
		Platinum 816	8 CPU @ 2.	/OGHz "Intel(r)	microarch	itecture co	dename Skylake-SP"
Update every 1							
Time elapsed: Core IPC		Cuclos	Local DR	AM accesses R	omoto DRAM	Accorcor	
0 0.30	24 M	82 M	1511		11 K	Accesses	
1 0.65	83 M	129 M	365	41			
2 0.22		3843 K	197		41		
3 0.13	321 K	2417 K	409		30		
4 0.17	525 K	3039 K	273	3	34		
5 0.13		2217 K	149		72		
6 0.57	74 M	130 M	233		93		
7 0.15	303 K	2080 K	267		09		
0 0 16	436 K	2010 1	340	0	24		

	General Exploration General Collection Log 🕀 Analysis Ta	•			up 😪 Event	t Count 🛛 🛱 Platfor	m	INTEL VTUN	E AMPLIFIER X	E 20	
	ouping: Package / H/W Context / F	unction / Call Stack		-	-				~ 🛠	Q	
	B								Front-End E	Joun	
	ackage / HAV Context / Function / Cal	Stack Clockticks	- 10	notructions Dotirod	CPIRate	Front-End Latency					
st Package / H/W Context / Func	ackage / 1000 Context / Function / Car	Statk Clothicks		Instructions Retired	Crintale	ICache Misses	ITLB Overhead	Branch Resteers	DSB Switches	Le	
v	package_O	148,318,222	,477	80,522,120,783	1.842	11.8%	2.1%	3.4%	1.2%		
1	▶ cpu_3	37,828,056	6,742	21,374,032,061	1.770	11.2%	1.8%	0.9%	1.2%		
	▼ cpu_0	37,732,056	6,598	20,334,030,501	1.856	13.3%	2.3%	4.6%	1.1%		
	 [Outside any known module] 	4,820,007	,230	4,082,006,123	1.181	8.3%	2.4%	5.6%	3.3%		
	▶ main	3,260,004	,890	1,150,001,725	2.835	0.0%	0.0%	0.0%	0.0%		
	ExAllocatePoolWithTag	868,001	,302	1,372,002,058	0.633	4.6%	0.2%		0.0%		
	ExFreePoolWithTag	676,001	,014	1,302,001,953	0.519	5.9%	0.3%		0.0%		
	▶ func@0x180510420	622,000	,933	200,000,300	3.110	0.0%	0.0%	0.0%	0.0%		
<	⊾ func@0x180030e50	360.000		198 000 297	1 818	ΠΠ%	Π 6%		ΠΠ%		
Г	Q2 Q+ Q+Q+ 1s	2s 3s 4s	Ss 6	6s 7s 8s	9s 10s	11s 12s 13	3s 14s 15s	16s 17 18.167s	🗹 Thread		
	Thread (TID: 47600)			And the state of the second	white a damage	and the state of the	and a state of the	and day plaining and	🔺 🛛 🔲 Runn	ing	
ъ	Thread (TID: 43788)						A	And malance and a sheet.	🖸 📶 CPU 1	Time	
	Thread (TID: 4600)		Marsh		A STATE OF A	Acres 1 March		And the second second second second second	🗹 CPU Time		
f	Thread (TID: 3456)									ie	
	Thread (TID: 48624)							to determine the second	🗸 🗹 System Band	lwid	
	CPU Time Internet System Bandwidth 19.000								Total, GE الملك	3/sec	

Profiling in host

- # perf kvm --host -guest ... -a record -o perf.data
 - Get /proc/kallsyms, /proc/modules from guest first.
 - Read results with perf or Vtune, or collect with Vtune (will invoke perf kvm collector).
- # Intel pcm-core, pcm-pcie, pcm-memory, pcm-numa, pcm-tsx, pcm-power, pcm-sensors.
 - Watch for excessive NUMA, memory, PCI traffic Project Navig.
- Any way, you only see detailed host data, kernel guest data [single guest!], and aggregated user mode guest data.
- Why bother ?
 - Because we can read and sample all cores and uncore PMU counters!

: Navig 🕱 iome/s	tk ≧ ₂ ▶ ₽ 40 ≥ ⑦ roooge ×				- (× =
dtlb dtlb	General Exploration General Exploration viewp ✓ ■ Collection Log ⊕ Analysis Target Analysis Type M Summary 4			Platforn			Þ
fcc	Grouping: Package / H/W Context / Function / Call Stack				¥ 4.	٩	×
ipsec2 mutexes ovs	Package / H/W Context / Function / Call Stack	Clockticks -	Instructions Retired	CPI Rate	≫ Fro Bou	≫ Ba. Sp.	E
🛯 ttt	=package 0	1,256,001,884	1,438,002,157	0.873	100.0%	0.0%	
🛯 vmtest	Ecpu_15	608,000,912	744,001,116	0.817	100.0%	0.0%	
🚠 r000g	E[Outside any known module]	168,000,252	342,000,513	0.491	100.0%	0.0%	
	∃avtab_search_node	20,000,030	6,000,009	3.333	0.0%	0.0%	1
	±d_lookup	18,000,027	8,000,012	2.250	83.3%	0.0%	
	±pid_revalidate	18,000,027	0		55.6%	0.0%	
	±[vmlinux]	14,000,021	12,000,018	1.167	0.0%	0.0%	1
	±do_task_stat	14,000,021	4,000,006	3.500	71.4%	0.0%	
	±_raw_spin_lock	12,000,018	6,000,009	2.000	41.7%	0.0%	
	±next_tgid	10,000,015	2,000,003	5.000	50.0%	0.0%	
	∃fsnotify	10,000,015	8,000,012	1.250	50.0%	0.0%	
	Selected 1 row(s):	1,256,001,884	1,438,002,157	0.873	100.0%	0.0%	
	Q©Q+Q=Q↔ 5s 10s 15s	20s	25s 3	30 🔽] Thread	~	2
	gemu-kvm (gemu-kvm (Hardware Ev				Hardw	Running dware CPL are E are Ev	

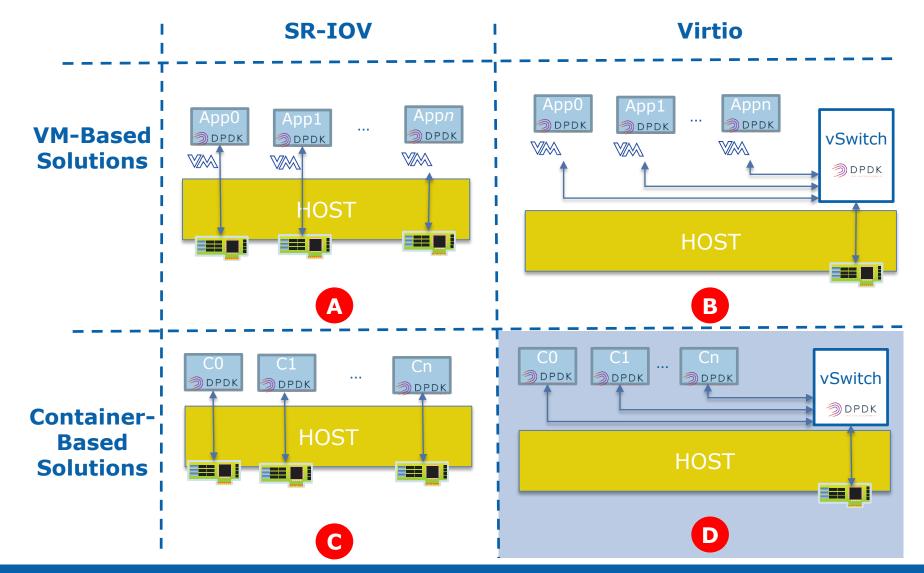
Profiling in guest

#perf list // Run in guest

- L1-dcache-loads [Hardware cache event] GOOD
- Only cpu-clock,etc [Software event] BAD. Make sure qemu –cpu host, OpenStack config capabilities:vcpu_model.features=arch_perfmon

perf record -a -e instructions,ref-cycles,LLC-loads,LLC-load-misses,LLC-stores,LLC-storemisses,... sleep 60

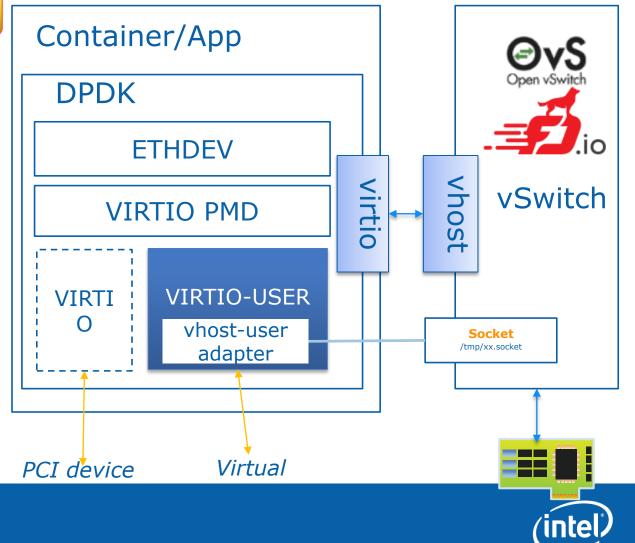
- Open results (perf.data) in perf viewer or import to Vtune (rename to *perf).
- You don't see all PMU events KVM only passes a dozen most important ones to guests
- All time sampling profiling methods would also work..



Utilizing best ISA in guests

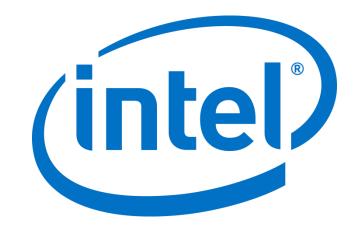
- VNFs (Virtual Network Function) vendors have to deploy to private clouds, often configured to spoof CPUids (Sandy Bridge as default is common). So they have to run with "least common denominator" architecture settings, that is not very efficient.
- Enhanced Platform Awareness approach top down, configure guests with real CPUIDs, use orchestration to start binaries compiled for the best supported instruction set.
- Bottom up approach use a small (in LOC) tool that reveals a physical CPU model when running under a hypervisor that hides/spoofs real CPUID to guests.
- Run a tool, get a real physical CPU model, select the right binary (with AVX, AVX2, AES-NI, AVX-512 support)

VM & Container Usage Models in NFV



Virtio in Containers

Description


- Virtio in Containers is a new approach to high-speed networking for containers.
- In a VM, QEMU helps with device emulations and interaction with the backend.
- In containers, we don't have QEMU:
 - We could introduce a kernel module to fulfil the same function as QEMU, but we're already trying to remove the existing out-of-tree kernel modules from DPDK.
 - Instead, all of the work is done in the DPDK PMD driver. We present virtio as a virtual device, just like the way that Ring, PCAP, or other virtual devices are used in DPDK. The control message are also handled through the DPDK driver.

Download links, docs

- Intel PCM <u>http://www.intel.com/software/pcm</u>
- NSB/Yardstick <u>https://wiki.opnfv.org/display/yardstick/Yardstick</u>
- Prox <u>https://01.org/intel-data-plane-performance-demonstrators</u>
 - Source, as a part of OPNFV: <u>https://github.com/opnfv/samplevnf/tree/master/VNFs/DPPD-PROX</u>
- Cisco Trex <u>https://trex-tgn.cisco.com/</u>
- Linux perf https://perf.wiki.kernel.org/index.php/Main_Page
- Intel Vtune <u>https://software.intel.com/en-us/intel-vtune-amplifier-xe/</u>
- CPUvirt2phys <u>https://software.intel.com/en-us/articles/how-to-tell-cpu-model-when-</u> running-under-hypervisor-that-spoofs-cpuid

