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Agenda

* NFV intro

« NSB (Prox, Yardstick)
 Benchmarking
 Examples (mini case studies)

« Virtualized performance profiling
« Profiling guest
« Profiling in host

 Utilizing best instruction sets in private clouds (EPA or bottom up
approach

* VNFs in containers vs VMs.
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NFV config options for Networking Data Path
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NSB Methodology - vnf performance
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Methodology: Vnf comparison through performance

benchmarking

Native Linux Env

Network application in multiporcess

VNF application

Dpdk stack

Control plane /
management
applications

Host OS —
User space
application

Socket i/f

Host Kernel Eth
Driver

IA Server— 2S-CPU with 4DDR4 per Socket
& x8, x16 PCle Gen-3 1/0

Ll

Int Mgmt

-

Network application with multiple VMs

VNF application

Dpdk stack

IA Server— 2S-CPU with 4DDR4 per Socket
& x8, x16 PCle Gen-3 I/0

Stand alone Virtualized Env

Control plane /
management
applications

Managed virtualized Infra Env

Host OS — Network application with multiple VMs
User space

application
VNF application

Control plane /
management

Dpdk stack applications

pmd

OVS-DPDK

Host Kernel
with KVM

& x8, x16 PCle Gen-3 I/O

EVALUATE BOTH SCALE-UP AND SCALE-QUT PERFORMANCE DATA




Physical Network Topology and SW BOM
FOR SW BASED TRAFFIC GENERATORS

NETWORK TOPOLOGY SW BOM
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NFVI Characterization Tools - PROX

Workloads: developed in collaboration with SP partners

* Workloads exercise NFVI HW and SW features identified
as performance-critical for VNFs and SFCs

* Workloads implement “kernels” of VNF/SFC functionality
* Run in PROX using different configuration files

Traffic generation and measurement (PROX-gen).._..,...---"""'

e Generates traffic that is specific to each workload ~
* Packet size and arrival distribution is configurable
* Automation interface provided for DATS

DATS: Dataplane Automated Testing System

* Scripts to automatically drive, measure, report multiple
dataplane test cases.

* Measurements with 0 packet loss (according to
RFC2544)

* Workload-specific Key Performance Indicator (KPI) used
as summary statistic

* Qutput is an automatically generated report
* Enables faster, more reliable test case execution
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Port forwarding without touching packets
Description

The application will take packets in from onc port and forward them unmodified to another port. This use case is not representing any
real use case but it 15 a good start to do a sanity check of the environment

The KPI is the number of packers per second for 64 byte packets with an accepted minimal packet loss (zero. no packet loss).
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Prox screenshot

* Open source project at 01.org, github (under OPNFV)

« On top of DPDK and prox, developer can combine building blocks in a text config file to
create DPDK performance demonstrators/custom traffic gen/test tools

« Developer can implement additional building blocks (complimenting available blocks:
Gen,lat,nop,acl,ipsec,qos,qging,classify,cgnat,gre,route,police,Ib*,etc)

« Convenient NCURSES GUI for live stats monitoring / configuration

prox vo.19: esp 12 up

1

4 lat
tx: : F
h : err: 3 avg rx: tx: err: H
Port ID/Ring Name Statistics per second Total Statista
Nb | Name Mode RX TX|Idle (%) RX (k) Drop (k) cPP|Clk (GHz)
2/0|esp_enc |esp_enc 50 .59 aQ J g.000
esp dec g 56.15 B : 2] : 0.008

Core 2: RX port 1 (gueue B8) === TX ring 0x7f4ab29cs020

Core 3: RX ringl[e,8] ex7f4ab29c6E80 === TX port 0 (queue 8)
Started with 2 warnings, last 2 warnings:

warn : System did not report numa_node for device QRER:00:083.0
wWwarn : System did not report numa_node for device GREEE:E0:83.0
Starting cores: 2, 3

Starting core 2 (all tasks)

Starting core 2 (all tasks)

Entering main Loop on core 2

Entering main loop on core 3

Waiting for core 2 to start... 0K

Waiting for core 2 to start... OK




Prox case study 1

 VNF Latency PCI-Passthrough
* VNF Jitter PCI-Passthrough
 VNF Latency SR-IOV

« VNF Jitter SR-IOV

Results, ys:

10M small packets (64 bytes) 13 fwd VNF

simple fwd, [3fwd, |3fwd, PCI 13fwd,

native native passthrough SR-IOV
min 14 30 45 40
avg 30 64 74 69

max 90 145 160 160




Case study 2 - Prox setup




Case study 2 - SKL-SP performance
Xeon Platinum 8168 @2.7Ghz, RHEL 7.2, Niantic NICs.

~2X performance improvement over BDW-EP on IPSec workload: ~20% from
IPC increase, ~80% from SIMD optimizations in DPDK-17.05 and Intel
multibuffer crypto library.

Freq, Mhz 1 core encrypt pkt size rate
12

Mhz/Kpkt, @IMIX pkt rate: 10

8

3.4 1.5

6
4
2
0

500 1000 1500 2000 Pkt, bytes

At IMIX full line rate (3940Kpkt), need 2 encrypter cores (+ LB core), 2
decrypter cores. Scales very well with MHZ and cores.

When using integrated QAT, need 1 core for encrypt and 1 core for decrypt

intel)




CPU/system profiling tools
« Linux perf — de facto standard now. PMU sampling in NMIs

« Intel PCM - PMU counting mode, uncore PMU

« Intel Vtune - standalone or as perf results viewer. Best viewer for x86 PMU
sampling. Custom collectors with IPT support, stack sampling support; or frontend
for pe rf & chUserstakomarsDocurmentsharmplifier XE\Projectsitest - Intel VTune Srplifier - O =

rojee.. X fly | b8 W= @ [ wooge x =
el e A e M R e s co.. =] General Exploration General Exploration viewpoint (change) @ I"TEI."TU"EAMPI.IHERXEZU"

Processor Counter Monitor: NUMA monitoring utility ;
of physical core - split
of logical cores =] test 4 E] collection Log @Ana\ysisTarget A Analysis Type [ Sumrnary & Bottorn-up | & Event Count = Platform 3
of online logical cores: 48 = o mirairos
Threads (logical cores) per physical core: 1 : i | Grouping [F‘ackage;’HN\f’ Context / Function / Call Stack :"‘ '5(| C:\| -
Front-End Bound

Num sockets: 2
Front-End Latency

Physical cores per socket: 24
Core PMU (perfmon) version: 4

-l test package J HAW Caontext) Function J Call Stack Clockticks ¥ Instructions Retired | CPIRate

Number of core PMU generic (programmable) counters: 8 ) ]
Width of generic (programmable) counters: bits ICache Misses ITLE Overhead Branch Resteers DSB Switches Len

of core PMU fixed counters: 3
fixed counters: 48 bits 2 )
Nominal core frequenc 2700000000 Hz » Cpu_3 37 525 056 742 21374032 061 1770 11.2% 1.8% 0.0% 1 2%
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Profiling in host

« # perf kvm --host —guest ... -a record -o perf.data
« Get /proc/kallsyms, /proc/modules from guest first.
« Read results with perf or Vtune, or collect with Vtune (will invoke perf kvm collector).

« # Intel pcm-core, pcm-pcie, pcm-memory, pcm-numa, pcm-tsx, pcm-power, pCm-sensors.

° Watch for excessive N U MA’ memory, PCI traffic 2@ ;"Plol:‘l'nef.‘sashl_;‘intelr’amplxefprojects;’vmtest-Intel‘u"'l'uneAmpliﬂer@\ocalhost.localdomam - m} x
roleet S (173 - OBE r000ge X =
% /hormes...
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+ ovs
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Profiling in guest

#perf list // Run in guest
- L1-dcache-loads [Hardware cache event] GOOD

— Only cpu-clock,etc [Software event] BAD. Make sure gemu —-cpu host, OpenStack config
capabilities:vcpu_model.features=arch_perfmon

# perf record —a —e instructions,ref-cycles,LLC-loads,LLC-load-misses,LLC-stores,LLC-store-
misses,... sleep 60

* Open results (perf.data) in perf viewer or import to Vtune (rename to *perf).
* You don’t see all PMU events - KVM only passes a dozen most important ones to guests

* All time sampling profiling methods would also work..




Utilizing best ISA in guests

« VNFs (Virtual Network Function) vendors have to deploy to private clouds, often configured
to spoof CPUids (Sandy Bridge as default is common). So they have to run with “least
common denominator” architecture settings, that is not very efficient.

« Enhanced Platform Awareness approach - top down, configure guests with real CPUIDs, use
orchestration to start binaries compiled for the best supported instruction set.

 Bottom up approach - use a small (in LOC) tool that reveals a physical CPU model when
running under a hypervisor that hides/spoofs real CPUID to guests.

 Run a tool, get a real physical CPU model, select the right binary (with AVX, AVX2, AES-NI,
AVX-512 support)




VM & Container Usage Models in NFV

: SR-IOV : Virtio
_____ R el R el

| |
| | | | |
| I@ I@ | DPDK DPDK DPDK '

VM-Based I DE’DK D“PDK EDPDK | VM VA VA vSwitch

Solutions 1 Y VA VA ! T . A S0r0k
| |
| |
| ==£ =_Egi : = l I
I e o = T I R
| | -==n
| |
. A, . (B

_____ = — — — m e e e e e e e — — — — — — — — — — — — —
[ |
: S bPDK I@DPDK |’J oo : 2)DPDK| |3)DPDK 2) DPDK vSwitch
Container-: : DDPoK
Based | | | | | ,

Solutions | ‘zEEmi~ = “=E W [
- =7 | == m
| |
| |
! !




Virtio in Containers

Virtio in Containers is a new approach to high-speed networking for
containers.

In a VM, QEMU helps with device emulations and interaction with
the backend.

In containers, we don't have QEMU:

e We could introduce a kernel module to fulfil the same function
as QEMU, but we're already trying to remove the existing out-of-
tree kernel modules from DPDK.

* |nstead, all of the work is done in the DPDK PMD driver. We
present virtio as a virtual device, just like the way that Ring,
PCAP, or other virtual devices are used in DPDK. The control
message are also handled through the DPDK driver.
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Download links, docs

Intel PCM - http://www.intel.com/software/pcm
NSB/Yardstick - https://wiki.opnfv.org/display/yvardstick/Yardstick

Prox - https://01.org/intel-data-plane-performance-demonstrators
Source, as a part of OPNFV: https://github.com/opnfv/samplevnf/tree/master/VNFs/DPPD-PROX

Cisco Trex - https://trex-tgn.cisco.com/

Linux perf - https://perf.wiki.kernel.org/index.php/Main Page

Intel Vtune - https://software.intel.com/en-us/intel-vtune-amplifier-xe/

CPUvirt2phys - https://software.intel.com/en-us/articles/how-to-tell-cpu-model-when-
running-under-hypervisor-that-spoofs-cpuid
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