intel)

Benchmarking and tuning NFV, using
Yardstick/NSB, OVS, prox, perf, Intel PCM

Alexander Komarov

Application Engineer, Intel Software and Services Group

3.11.2017

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune,
Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality,
or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer
to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

Agenda

* NFV intro

« NSB (Prox, Yardstick)
 Benchmarking
 Examples (mini case studies)

« Virtualized performance profiling
« Profiling guest
« Profiling in host

 Utilizing best instruction sets in private clouds (EPA or bottom up
approach

* VNFs in containers vs VMs.

NFV software transformation

Independent
Software Vendors

First "Ready”

S’f:ii‘{:ﬁi‘iz:i.““’"“’“; t h en Composable
| T services
“Resilient”
o Elasticity
and speed
E Classical Network Appliances Ethernet Switches ® p DE c'ﬂ m pn EE d
o
E Better
a Ltilization Elnud IfiEd

Standardize,

olattarms Virtualized

Decoupled

FUNCTIONS

NFV config options for Networking Data Path

VNF

User Space

Kernel

vSwitch

User Space

Kernel

}

vSwitch

VNF

vSwitch + DPDK

User Space

vSwitch + DPDK

User Space
Kernel

Shared Memory

vSwitch + DPDK

User Space
Kernel

-
(] Enterpri Perf Testi Perf Testi Trusted e A
o eIr1|_: FISe (:lreq;ielc?g Telecom NFV (:lreq:iielc?Q VNFs (Requires Limited East-West
ONLY Traffic
gemu Layer gemu Layer gemu Layer gemu Layer gemu Layer gemu Layer gemu Layer
VNF VNF VNF

VNF

VNF

User Space ;

User Spac

= =
= = = =

(
L
.
&

o &

DPDK Support
Requine

Required

NIC
DPDK Support

Required

J |

NIC
DPDK Support

== NIC
PDK and SR-IOV
Suppogt Required

NIC
SR-IOV Suppo
Reguirgd

NSB Methodology - vnf performance

benchmarking

VNF performance

benchmarking Evaluate both scale-

up and scale-out

Native Linux environment
performance data

Standalone Virtualized

environment VNFs performance graphs

for both scale-up and
scale-out in all three
environments

Managed virtualized
environment (e.g.
OpenStack)

Test Infrastructure:
Standard test
framework forall 3
environments

Collect KPlIs:
Network KPIs, VNF
KPIs and NFVi KPIs

Methodology: Vnf comparison through performance

benchmarking

Native Linux Env

Network application in multiporcess

VNF application

Dpdk stack

Control plane /
management
applications

Host OS —
User space
application

Socket i/f

Host Kernel Eth
Driver

IA Server— 2S-CPU with 4DDR4 per Socket
& x8, x16 PCle Gen-3 1/0

Ll

Int Mgmt

-

Network application with multiple VMs

VNF application

Dpdk stack

IA Server— 2S-CPU with 4DDR4 per Socket
& x8, x16 PCle Gen-3 I/0

Stand alone Virtualized Env

Control plane /
management
applications

Managed virtualized Infra Env

Host OS — Network application with multiple VMs
User space

application
VNF application

Control plane /
management

Dpdk stack applications

pmd

OVS-DPDK

Host Kernel
with KVM

& x8, x16 PCle Gen-3 I/O

EVALUATE BOTH SCALE-UP AND SCALE-QUT PERFORMANCE DATA

Physical Network Topology and SW BOM
FOR SW BASED TRAFFIC GENERATORS

NETWORK TOPOLOGY SW BOM

2x10Gbe SFP

Internet connections | NSB 16.04 based on YardStick |
I @TRex TREX 2.05 H "”;’.‘;“2.4.13-2ubuntu3.1.|

im& NGINXEiNX 1.1.10 | | Pktgen 3.0.14

2X 1 O G Ovs ovs 2.7

e SFP =) DPDK

4 | AKV QEMU 2.5

£ Ubuntu 16.04 LTS

2x10Gbe SFP
connections

Supported traffic
generators
TREX
Pktgen
Ping
Prox gen
Benchmark/NGiNX

NFVI Characterization Tools - PROX

Workloads: developed in collaboration with SP partners

* Workloads exercise NFVI HW and SW features identified
as performance-critical for VNFs and SFCs

* Workloads implement “kernels” of VNF/SFC functionality
* Run in PROX using different configuration files

Traffic generation and measurement (PROX-gen).._..,...---"""'

e Generates traffic that is specific to each workload ~
* Packet size and arrival distribution is configurable
* Automation interface provided for DATS

DATS: Dataplane Automated Testing System

* Scripts to automatically drive, measure, report multiple
dataplane test cases.

* Measurements with 0 packet loss (according to
RFC2544)

* Workload-specific Key Performance Indicator (KPI) used
as summary statistic

* Qutput is an automatically generated report
* Enables faster, more reliable test case execution

*i\

....

....... Dataplane "’ VM Dataplane
...... traffic mEmmm e traffic
---- | ! . | /
---- .1 Soft Switch /
-'. —————————————

1 o
PROX-gen \ ; Operating System / PROX-gen
/

\ :' SUT /

Traffic generation Traffic generation

and and
measurement 1 measurement
1
~ -

~ _— ! -

.‘"\\,»"')- i - — —*_7_7:"'

f S -
Out-of-band e -

DATS control ~ DATS -7
&data \[Control scripts]. TESTER

Port forwarding without touching packets
Description

The application will take packets in from onc port and forward them unmodified to another port. This use case is not representing any
real use case but it 15 a good start to do a sanity check of the environment

The KPI is the number of packers per second for 64 byte packets with an accepted minimal packet loss (zero. no packet loss).

Result
Throughput (Mpps) ——
Theoretical Max (Mpps)
w
=4
=
s
=y
Cg» 30
=
=
20
...... > o
-------- 64 128 256 512 1024 1280 1s51e
....... FPacket size (B)
.....
acket size (B) Throughput (Mpps) Theoretical Max (Mpps) Duration (s)
64 433945123314 59.5238095238 120.278173923
1024 4.7 3 0635 1 177
1280 3.84615146073 3.84615384615 15.0364170074
1518 || 3.25097532563 || 3.25097529259 || 15.0354731083

Prox screenshot

* Open source project at 01.org, github (under OPNFV)

« On top of DPDK and prox, developer can combine building blocks in a text config file to
create DPDK performance demonstrators/custom traffic gen/test tools

« Developer can implement additional building blocks (complimenting available blocks:
Gen,lat,nop,acl,ipsec,qos,qging,classify,cgnat,gre,route,police,Ib*,etc)

« Convenient NCURSES GUI for live stats monitoring / configuration

prox vo.19: esp 12 up

1

4 lat
tx: : F
h : err: 3 avg rx: tx: err: H
Port ID/Ring Name Statistics per second Total Statista
Nb | Name Mode RX TX|Idle (%) RX (k) Drop (k) cPP|Clk (GHz)
2/0|esp_enc |esp_enc 50 .59 aQ J g.000
esp dec g 56.15 B : 2] : 0.008

Core 2: RX port 1 (gueue B8) === TX ring 0x7f4ab29cs020

Core 3: RX ringl[e,8] ex7f4ab29c6E80 === TX port 0 (queue 8)
Started with 2 warnings, last 2 warnings:

warn : System did not report numa_node for device QRER:00:083.0
wWwarn : System did not report numa_node for device GREEE:E0:83.0
Starting cores: 2, 3

Starting core 2 (all tasks)

Starting core 2 (all tasks)

Entering main Loop on core 2

Entering main loop on core 3

Waiting for core 2 to start... 0K

Waiting for core 2 to start... OK

Prox case study 1

 VNF Latency PCI-Passthrough
* VNF Jitter PCI-Passthrough
 VNF Latency SR-IOV

« VNF Jitter SR-IOV

Results, ys:

10M small packets (64 bytes) 13 fwd VNF

simple fwd, [3fwd, |3fwd, PCI 13fwd,

native native passthrough SR-IOV
min 14 30 45 40
avg 30 64 74 69

max 90 145 160 160

Case study 2 - Prox setup

Case study 2 - SKL-SP performance
Xeon Platinum 8168 @2.7Ghz, RHEL 7.2, Niantic NICs.

~2X performance improvement over BDW-EP on IPSec workload: ~20% from
IPC increase, ~80% from SIMD optimizations in DPDK-17.05 and Intel
multibuffer crypto library.

Freq, Mhz 1 core encrypt pkt size rate
12

Mhz/Kpkt, @IMIX pkt rate: 10

8

3.4 1.5

6
4
2
0

500 1000 1500 2000 Pkt, bytes

At IMIX full line rate (3940Kpkt), need 2 encrypter cores (+ LB core), 2
decrypter cores. Scales very well with MHZ and cores.

When using integrated QAT, need 1 core for encrypt and 1 core for decrypt

intel)

CPU/system profiling tools
« Linux perf — de facto standard now. PMU sampling in NMIs

« Intel PCM - PMU counting mode, uncore PMU

« Intel Vtune - standalone or as perf results viewer. Best viewer for x86 PMU
sampling. Custom collectors with IPT support, stack sampling support; or frontend
for pe rf & chUserstakomarsDocurmentsharmplifier XE\Projectsitest - Intel VTune Srplifier - O =

rojee.. X fly | b8 W= @ [wooge x =
el e A e M R e s co.. =] General Exploration General Exploration viewpoint (change) @ I"TEI."TU"EAMPI.IHERXEZU"

Processor Counter Monitor: NUMA monitoring utility ;
of physical core - split
of logical cores =] test 4 E] collection Log @Ana\ysisTarget A Analysis Type [Sumrnary & Bottorn-up | & Event Count = Platform 3
of online logical cores: 48 = o mirairos
Threads (logical cores) per physical core: 1 : i | Grouping [F‘ackage;’HN\f’ Context / Function / Call Stack :"‘ '5(| C:\| -
Front-End Bound

Num sockets: 2
Front-End Latency

Physical cores per socket: 24
Core PMU (perfmon) version: 4

-l test package J HAW Caontext) Function J Call Stack Clockticks ¥ Instructions Retired | CPIRate

Number of core PMU generic (programmable) counters: 8)]
Width of generic (programmable) counters: bits ICache Misses ITLE Overhead Branch Resteers DSB Switches Len

of core PMU fixed counters: 3
fixed counters: 48 bits 2)
Nominal core frequenc 2700000000 Hz » Cpu_3 37 525 056 742 21374032 061 1770 11.2% 1.8% 0.0% 1 2%

Package thermal spec power: 205 Watt; Package minimum power: 90 Watt; Package maximum power: 413 Watt;

Socket ©: 2 memory controllers detected with total number of 6 channels. 3 QPI ports detected. w cpu_0 37,732,056 598 20,334,030 501 1.856 13.3% 2.3% 46% 1.1%
Socke 2 memory controllers detected with total number of 6 channels. 3 QPI ports detected » [Outside any known module] 4 590 007 230 4082 006 123 1181 a3% 2 4% 5R% 33%
Socket @ T U
r|::-,\ QPI link O speed: 23.4 G 3 S (10.4 GT/second) p main 3,260,004 8320 1,160,001 725 2836 0.0% 0.0% 0.0% 0.0%
f L Nk L. shoedt : $o ety Loecond) » ExallocatePooliithTag 868,001,302 1,372,002 053 0633 4.6% 02% 0.0%
sacket 1 B » ExFreePoalWithTag 676,001,014 1302001 953 0519 55% 0.3% 0.0%
O ik il aal K adinpalin S anal i ataln, » func@0x180510420 622 000,933 200,000,300 3110 0.0% 00% 0.0% 0.0%
Max QPI link 2 red: 21. >B 2s/second 2cond) e flne@EN TRNN3N S0 RN NNN 540 147 NNN 297 1 R1R (R MR (R ¥
L4 >
Detected Intel(R) Xeon(R) Platinum 8168 CPU @ 2./6GHz "Intel(r) microarchitecture codename Skylake-SP” T T B T e e
» every 1.0 seconds -
lopsed: 1026 ms il L T T U T T T N W L) L I G-I 15,157 | Thread

Instructions | Cycles | Local DRAM accesses | Remote DRAM Accesses Thread (71D: 47600) | |0 L 0t i A L ~ 71 W Funing
St 2 o L% Thread (TID: 43768 SN LA it e it (2] lud CPU Tirne
Thread (TID: 4600) e N Mol AR N s, e Y TVTTY S W CPU Time
Thread (TID: 3456) | SN dluky CPU Tirne
Thread (TID: 48624) | N - 4 Ak aalh e diie. v [System Bandwidth
il Total, GB/sec

Thread

2810 K CPU Tirne - PO
1049 K 36 3 System Bandwidth mi13.000 N
2764 K

------ S - , FILTER 100.0% o | Process [Any Process | [AmyThread + | Wodule | Ay Module V| | | Userfunctions + || Showinline i~ || Functions an

Profiling in host

« # perf kvm --host —guest ... -a record -o perf.data
« Get /proc/kallsyms, /proc/modules from guest first.
« Read results with perf or Vtune, or collect with Vtune (will invoke perf kvm collector).

« # Intel pcm-core, pcm-pcie, pcm-memory, pcm-numa, pcm-tsx, pcm-power, pCm-sensors.

° Watch for excessive N U MA’ memory, PCI traffic 2@ ;"Plol:‘l'nef.‘sashl_;‘intelr’amplxefprojects;’vmtest-Intel‘u"'l'uneAmpliﬂer@\ocalhost.localdomam - m} x
roleet S (173 - OBE r000ge X =
% /hormes...
H # General Exploration General Exploration viewpoint (change) @
 Any way, you only see detailed host data, © @ oo R, i St _
= @ dtlb B8 collection Log| @ Analysis Target Analysis Type| | il Summary | [CRENRTETY |
: g?:lbz Grouping: | Package / H/W Context / Function / Call Stack v be| Q] |
kernel guest data [single guest!], @i | P A T
* gmutexes Package / H/W Context / Function / Call Stack Clockticksw Ratired Rate Bou.. |Sp. |
+ ovs
d t d d t d t LS Scackage 0 | 1256001884 1438.002.157]0.873 IR 00| |
a n agg rega e user mO e g UeS a a . - I cepuls £08,000,912 744,001,116 0.817 100.0%
fim ronog “[Outside any known module] 168,000,252 342,000,513 0.491 100.0%
~avtab_search_node 20,000,030
+d_leck
o Why bother = ? +p_id__r:\?a|LiJ§ate
+vmlinux]
~do_task_stat
Because we can read and sample all e s lock
“next_tgid
+fsnotify
cores and uncore PMU counters! —
——
CoQeQ-Qe . ss 10s 155 208 255 30 [Thread |~
- qernu-kvm (... [] | [B0 Running
o qz:zg:i I ([
= - -~
f"m” [P e v
Hardware 8. L it IL leskrshe bk bbb bbb b bbbt el Ll dd b s H:ar:x:rr:;':

oy Thread R Ay vodule -

Profiling in guest

#perf list // Run in guest
- L1-dcache-loads [Hardware cache event] GOOD

— Only cpu-clock,etc [Software event] BAD. Make sure gemu —-cpu host, OpenStack config
capabilities:vcpu_model.features=arch_perfmon

perf record —a —e instructions,ref-cycles,LLC-loads,LLC-load-misses,LLC-stores,LLC-store-
misses,... sleep 60

* Open results (perf.data) in perf viewer or import to Vtune (rename to *perf).
* You don’t see all PMU events - KVM only passes a dozen most important ones to guests

* All time sampling profiling methods would also work..

Utilizing best ISA in guests

« VNFs (Virtual Network Function) vendors have to deploy to private clouds, often configured
to spoof CPUids (Sandy Bridge as default is common). So they have to run with “least
common denominator” architecture settings, that is not very efficient.

« Enhanced Platform Awareness approach - top down, configure guests with real CPUIDs, use
orchestration to start binaries compiled for the best supported instruction set.

 Bottom up approach - use a small (in LOC) tool that reveals a physical CPU model when
running under a hypervisor that hides/spoofs real CPUID to guests.

 Run a tool, get a real physical CPU model, select the right binary (with AVX, AVX2, AES-NI,
AVX-512 support)

VM & Container Usage Models in NFV

: SR-IOV : Virtio
_____ R el R el

| |
| | | | |
| I@ I@ | DPDK DPDK DPDK '

VM-Based I DE’DK D“PDK EDPDK | VM VA VA vSwitch

Solutions 1 Y VA VA ! T . A S0r0k
| |
| |
| ==£ =_Egi : = l I
I e o = T I R
| | -==n
| |
. A, . (B

_____ = — — — m e e e e e e e — — — — — — — — — — — — —
[|
: S bPDK I@DPDK |’J oo : 2)DPDK| |3)DPDK 2) DPDK vSwitch
Container-: : DDPoK
Based | | | | | ,

Solutions | ‘zEEmi~ = “=E W [
- =7 | == m
| |
| |
! !

Virtio in Containers

Virtio in Containers is a new approach to high-speed networking for
containers.

In a VM, QEMU helps with device emulations and interaction with
the backend.

In containers, we don't have QEMU:

e We could introduce a kernel module to fulfil the same function
as QEMU, but we're already trying to remove the existing out-of-
tree kernel modules from DPDK.

* |nstead, all of the work is done in the DPDK PMD driver. We
present virtio as a virtual device, just like the way that Ring,
PCAP, or other virtual devices are used in DPDK. The control
message are also handled through the DPDK driver.

Container/App

DPDK

ETHDEV

OvS

Open vSwitch

- 10

VIRTIO PMD

VIRTIO-USER

<
3

.
| adapter

OIMIA

" \

v

ISOYA

vSwitch

PCI device Virtual

Socket

/tmp/xx.socket

Download links, docs

Intel PCM - http://www.intel.com/software/pcm
NSB/Yardstick - https://wiki.opnfv.org/display/yvardstick/Yardstick

Prox - https://01.org/intel-data-plane-performance-demonstrators
Source, as a part of OPNFV: https://github.com/opnfv/samplevnf/tree/master/VNFs/DPPD-PROX

Cisco Trex - https://trex-tgn.cisco.com/

Linux perf - https://perf.wiki.kernel.org/index.php/Main Page

Intel Vtune - https://software.intel.com/en-us/intel-vtune-amplifier-xe/

CPUvirt2phys - https://software.intel.com/en-us/articles/how-to-tell-cpu-model-when-
running-under-hypervisor-that-spoofs-cpuid

http://www.intel.com/software/pcm
https://wiki.opnfv.org/display/yardstick/Yardstick
https://01.org/intel-data-plane-performance-demonstrators
https://github.com/opnfv/samplevnf/tree/master/VNFs/DPPD-PROX
https://trex-tgn.cisco.com/
https://perf.wiki.kernel.org/index.php/Main_Page
https://software.intel.com/en-us/intel-vtune-amplifier-xe/
https://software.intel.com/en-us/articles/how-to-tell-cpu-model-when-running-under-hypervisor-that-spoofs-cpuid

