
Win32/Flamer: Reverse Engineering and

Framework Reconstruction

Aleksandr Matrosov

Eugene Rodionov

Outline of The Presentation

 Typical malware vs. Stuxnet/Flame
 What the difference?

 Flamer code reconstruction problems
 C++ code reconstruction

 Library code identification

 Flamer framework overview

 Object oriented code reconstruction

 Relationship Stuxnet/Duqu/Flamer

Typical Malware vs. Stuxnet/Flamer

What’s the Difference?

What’s the Difference?

 Typical malware

 Different motivation, budget …

 Use 1-days for distribution

 Anti-stealth for bypassing AV

 Stealth timing: months

 Developed in C or C++ in C style

 Simple architecture for plugins

 Traditional ways for obfuscation:

 packers

 polymorphic code

 vm-based protection

 …

 Stuxnet/Flame …
 Different motivation, budget …

 Use 0-days for distribution

 Anti-stealth for bypassing all sec
soft

 Stealth timing: years

 Tons of C++ code with OOP

 Industrial OO framework platform

 Other ways of code obfuscation:

 tons of embedded static code

 specific compilers/options

 object oriented wrappers for
typical OS utilities

Stuxnet/Duqu/Flamer/Gauss Appearance

Code Complexity Growth

Gauss miniFlamer Stuxnet Duqu Flamer

Code Complexity Growth

C++ Code REconstruction

Problems

C++ Code Reconstruction Problems

 Object identification
 Type reconstruction

 Class layout reconstruction
 Identify constructors/destructors

 Identify class members

 Local/global type reconstruction

 Associate object with exact method calls

 RTTI reconstruction
 Vftable reconstruction

 Associate vftable object with exact object

 Class hierarchy reconstruction

C++ Code Reconstruction Problems

Class A

vfPtr

a1()

a2()
A::vfTable

meta

A::a1()

A::a2()

RTTI Object
Locator

signature

pTypeDescriptor

pClassDescriptor

C++ Code Reconstruction Problems

Identify Smart Pointer Structure

Identify Exact Virtual Function Call in vtable

Identify Exact Virtual Function Call in vtable

Identify Exact Virtual Function Call in vtable

Identify Custom Type Operations

Identify Objects Constructors

Identify Objects Constructors

Library code identification

problems

Library Code Identification Problems

 Compiler optimization

 Wrappers for WinAPI calls

 Embedded library code
 Library version identification problem

 IDA signatures used syntax based detection methods
 Recompiled libraries problem

 Compiler optimization problem

Library Code Identification Problems

Object Oriented API Wrappers and Implicit Calls

Object Oriented API Wrappers and Implicit Calls

Object Oriented API Wrappers and Implicit Calls

Festi: OOP in kernel-mode

Main Festi Functionality store in kernel mode

Win32/Festi
Dropper

Win32/Festi
kernel-mode

driver

Win32/Festi
Plugin 1

Win32/Festi
Plugin 2

Win32/Festi
Plugin N...

Install kernel-mode
 driver

Download plugins

user-mode

kernel-mode

Main Festi Functionality store in kernel mode

Win32/Festi
Dropper

Win32/Festi
kernel-mode

driver

Win32/Festi
Plugin 1

Win32/Festi
Plugin 2

Win32/Festi
Plugin N...

Install kernel-mode
 driver

Download plugins

user-mode

kernel-mode

Festi: Architecture

Win32/Festi
C&C Protocol

Parser

Win32/Festi
Network Socket

Win32/Festi
Plugin Manager

Win32/Festi
Memory
Manager

Festi: Plugin Interface

Plugin1
Plugin 1

struct PLUGIN_INTERFACE

Plugin 1

struct PLUGIN_INTERFACE

Plugin2

Plugin3

PluginN

Plugin 2

struct PLUGIN_INTERFACE

Plugin 3

struct PLUGIN_INTERFACE

Plugin N

struct PLUGIN_INTERFACE

...

Array of pointers
to plugins

Festi: Plugins

 Festi plugins are volatile modules in kernel-mode address space:

 downloaded each time the bot is activated

 never stored on the hard drive

 The plugins are capable of:

 sending spam – BotSpam.dll

 performing DDoS attacks – BotDoS.dll

 providing proxy service – BotSocks.dll

Flamer Framework Overview

An overview of the Flamer Framework

The main types used in Flamer Framework are:

 Command Executers –the objects exposing interface that allows

the malware to dispatch commands received from C&C servers

 Tasks – objects of these type represent tasks executed in

separate threads which constitute the backbone of the main

module of Flamer

 Consumers – objects which are triggered on specific events

(creation of new module, insertion of removable media and etc.)

 Delayed Tasks – these objects represent tasks which are executed

periodically with certain delay.

An overview of the Flamer Framework

Vector<Command Executor>

DB_Query ClanCmd

Vector<Task>

IDLER CmdExec

Vector<DelayedTasks>

Euphoria
Share

Supplier

Vector<Consumer>

Mobile
Consumer

Cmd
Consumer

MunchSniffer FileFinder

FileCollect Driller GetConfig

LSS
Sender

Frog Beetlejuice

Lua
Consumer

Media
Consumer

Some of Flamer Framework Components

Security
Identifying processes in the systems corresponding to
security software: antiviruses, HIPS, firewalls, system
information utilities and etc.

Microbe Leverages voice recording capabilities of the system

Idler Running tasks in the background

BeetleJuice Utilizes bluetooth facilities of the system

Telemetry Logging of all the events

Gator Communicating with C&C servers

Flamer SQL Lite Database Schema

Flamer SQL Lite Database Schema

REconstructing Flamer Framework

Data Types Being Used

 Smart pointers

 Strings

 Vectors to maintain the objects

 Custom data types: wrappers, tasks, triggers and etc.

Data Types Being Used: Smart pointers

typedef struct SMART_PTR

{

 void *pObject; // pointer to the object

 int *RefNo; // reference counter

};

Data Types Being Used: Strings

struct USTRING_STRUCT

{

 void *vTable; // pointer to the table

 int RefNo; // reference counter

 int Initialized;

 wchar_t *UnicodeBuffer; // pointer to unicode string

 char *AsciiBuffer; // pointer to ASCII string

 int AsciiLength; // length of the ASCII string

 int Reserved;

 int Length; // Length of unicode string

 int LengthMax; // Size of UnicodeBuffer

};

Data Types Being Used: Vectors

struct VECTOR

{

 void *vTable; // pointer to the table

 int NumberOfItems; // self-explanatory

 int MaxSize; // self-explanatory

 void *vector; // pointer to buffer with elements

};

 Used to handle the objects:
 tasks

 triggers

 etc.

Using Hex-Rays Decompiler

 Identifying constructors/destructors
 Usually follow memory allocation

 The pointer to object is passed in ecx (sometimes in other registers)

 Reconstructing object’s attributes
 Creating custom type in “Local Types” for an object

 Analyzing object’s methods
 Creating custom type in “Local Types” for a table of virtual routines

Using Hex-Rays Decompiler

 Identifying constructors/destructors
 Usually follow memory allocation

 The pointer to object is passed in ecx (sometimes in other registers)

 Reconstructing object’s attributes
 Creating custom type in “Local Types” for an object

 Analyzing object’s methods
 Creating custom type in “Local Types” for a table of virtual routines

Reconstructing Object’s Attributes

Reconstructing Object’s Attributes

Reconstructing Object’s Methods

Reconstructing Object’s Methods

Reconstructing Object’s Methods

DEMO

Relationship

Stuxnet/Duqu/Gauss/Flamer

Source Code Base Differences

Exploit Implementations

Stuxnet Duqu Flame Gauss

MS10-046
(LNK)

MS10-046
(LNK)

MS10-046
(LNK)

MS10-061
(Print Spooler)

MS10-061
(Print Spooler)

MS08-067
(RPC)

MS08-067
(RPC)

MS10-073
(Win32k.sys)

MS10-092
(Task Scheduler)

MS11-087
(Win32k.sys)

Exploit Implementations: Stuxnet & Duqu

 The payload is injected into processes from both kernel-
mode driver & user-mode module

 Hooks:
 ZwMapViewOfSection

 ZwCreateSection

 ZwOpenFile

 ZwClose

 ZwQueryAttributesFile

 ZwQuerySection

 Executes LoadLibraryW passing as a parameter either:
 KERNEL32.DLL.ASLR.XXXXXXXX

 SHELL32.DLL.ASLR.XXXXXXXX

Exploit Implementations: Stuxnet & Duqu

 The payload is injected into processes from both kernel-
mode driver & user-mode module

 Hooks:
 ZwMapViewOfSection

 ZwCreateSection

 ZwOpenFile

 ZwClose

 ZwQueryAttributesFile

 ZwQuerySection

 Executes LoadLibraryW passing as a parameter either:
 KERNEL32.DLL.ASLR.XXXXXXXX

 SHELL32.DLL.ASLR.XXXXXXXX

Injection mechanism: Flame

 The payload is injected into processes from user-mode
module

 The injection technique is based on using:
 VirtualAllocEx

 WriteProcessMemory\ReadProcessMemory

 CreateRemoteThread\RtlCreateUserThread

 The injected module is disguised as shell32.dll

 Hooks the entry point of msvcrt.dll by modifying PEB

Injection mechanism: Flame

 The payload is injected into processes from user-mode
module

 The injection technique is based on using:
 VirtualAllocEx

 WriteProcessMemory\ReadProcessMemory

 CreateRemoteThread\RtlCreateUserThread

 The injected module is disguised as shell32.dll

 Hooks the entry point of msvcrt.dll by modifying PEB

Exploit Implementations: Gauss

 The payload is injected into processes from user-mode

module

Thank you for your attention!

Aleksandr Matrosov
matrosov@eset.sk
@matrosov

Eugene Rodionov
rodionov@eset.sk
@vxradius

